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Abstract 
Laser Speckle Contrast Imaging (LSCI) is a real-time, non-invasive method in used to 

investigate blood flow and perfusion in biological tissues with high temporal and spatial 

resolution. A reduction in speckle contrast due to particle motion is the primary contrast 

mechanism in LSCI. Motion results in speckle fluctuations in time and reduces the contrast 

over a given camera integration period. There are a variety of parameters that effect 

contrast besides motion. The optical properties of the scattering medium are one of the 

parameters effecting LSCI values. Changes in blood hematocrit levels manifest as changes 

in optical properties. In this work, we explore the effects of different hematocrit levels on 

LSCI contrast values using fluid phantoms with varying optical properties.  

Herein, the combined effects of scattering and absorption coefficients on LSCI values are 

investigated using fluid phantoms. These fluid phantoms were designed to mimic the 

scattering and absorbing properties of blood with varying levels of hematocrit. The flow 

phantoms in our experiments contained different concentrations of glass microspheres 

(brand name Luxsil) and India ink mixed with DI water. The different number of scatterers 

and absorbers in the phantoms mimic the scattering and absorption behaviors of blood with 

different number of red blood cells. An LSCI setup combined with a simple flow system 

was used in our experiments in order to investigate the effects of combined scattering and 

absorption coefficient of 121 samples with different concentrations of Luxsil and India ink 

microspheres. The fluid phantoms were run in 2mm glass tubing on top of a plastic block 

using a mini peristaltic pump. An LSCI setup imaged the flow using a CCD camera. A 

MATLAB GUI controlled the pump and camera to provide near real-time contrast images 

of the flow. An 11x11 matrix of phantoms was created. Scattering coefficient was varied 
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on the columns and absorption coefficient was varied on the rows such that the first element 

of the matrix is water and the last element contains the phantom with the maximum number 

of scatterers and absorbers. A hundred raw speckle images were recorded for each phantom 

experiment using the described optical setup. The experiments were conducted 3 times for 

each element of the matrix. The 11x11 results matrix displayed the average speckle image 

of all 300 raw speckle images. Additionally, the matrix was filled by the contrast images 

where contrast was defined as standard deviation of intensity over mean intensity. In order 

to compare the results numerically, we calculated the ratio of the contrast from the same 

size window of moving portion over the static portion of the phantoms. According to the 

results from LSCI experiments, an increase in scattering and absorption coefficients led to 

a reduction in contrast values of LSCI images. By increasing the number of scatterers and 

absorbers (equivalent to changing hematocrit level), the optical properties (scattering and 

absorption coefficient) increased, which led to a reduction in contrast value in the moving 

area. A negative slope linear curve describes the relationship between and scattering 

coefficient ( ) and between  and absorption coefficient ( ). 
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Chapter 1 

Literature review 
 

 

1.1 An introduction to Laser Speckle Contrast Imaging (LSCI) 
Laser Speckle Contrast Imaging (LSCI) is a non-invasive method for monitoring blood 

flow and perfusion. None-invasive techniques for monitoring blood flow have been in 

existence for approximately 30 years [1]. Laser speckle phenomenon is the basis of many 

of these methods. In the 1960s the laser speckle phenomenon was observed and researchers 

began exploiting it for a variety of metrology applications. In the 1970s, researchers began 

investigating time-varying speckle that resulted from coherent light being scattered from 

dynamic systems. Ferchers’ group at University of Essen in Germany first proposed LSCI 

in 1980 [2]. The main goal of their research was to develop a non-invasive method to 

monitor blood perfusion in retina. Early methods involved injecting a fluorescent dye to 

patient’s blood vessels until it was visible in the retina. [2,3]. It is obvious that this method 

was invasive and  a non-invasive method was preferred. LSCI is a method that exploits the 

relationship between speckle fluctuations and moving particles in the living tissues, 

noninvasively. Motion in the object space causes speckle fluctuations in time in the image 

space. When speckles fluctuate on a time scale shorter than the observing camera 

integration time, the result is a blurring of the speckle pattern in the image. This blurring 

results in a reduction in spatial contrast.  
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The early manifestation of LSCI to monitor blood flow in the retina employed single 

exposure speckle photography with a film camera [2].  A particular challenge in using the 

single exposure method with film was the post processing steps necessary after taking the 

speckle images in order to extract the information we need. With the advent of CCD 

cameras in the 1990’s, near real-time methods were developed to monitor blood flow with 

minimal further processing.   

 

1.2 Laser Speckle 

When we illuminate a diffuse surface or a scattering volume with laser light, the scattered 

light produces a random interference pattern called laser speckle. In the past, speckles were 

considered primarily as a nuisance, or source of noise, which lowered the quality of images. 

. More recently, however, it has been recognized by the biomedical optics community that 

dynamic speckle patterns carry with them information about dynamic biological tissues. 

Figure 1 shows a sample speckle pattern: 

 

 

Figure 1: a sample speckle pattern 
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When a rough surface is illuminated by laser light, where the surface variation is on the 

order of or longer than the wavelength of the light, the back-scattered beams follow 

different optical path lengths to reach the image plane. The coherent addition of the beams 

reaching a single point on the image plane yields the final intensity at that point. If the 

summation of all the amplitudes cancels each other out, the resultant intensity is zero. In 

the other hand, when all of wavelets are in phase, the maximum intensity will be achieved.  

Since laser speckle is a random process, it is appropriate to describe it statistically. Thus, 

when we want to talk about speckles and mathematic behind them, the probability 

distribution function is one the most important thing to mention.  

The contrast of a speckle pattern is defined as the ratio between standard deviation and 

mean intensity: 

Equation 1.1 

 

Which  is standard deviation of the intensity and  is mean of the intensity. When we 

illuminate a perfectly diffusing surface with a polarized, single frequency, highly coherent 

laser light, the standard deviation is equal to the mean intensity in the resultant speckle 

pattern. The contrast is equal to unity in this case, which indicates that there is no motion 

in the object plane during the time period of the camera integration. Typically, in biological 

tissues, there is always some motion in the scattering particles and standard deviation is 

smaller than mean intensity, reducing the contrast. Thus, by this definition, contrast is 

bound between zero and one. It should be noted, however, that the local contrast in a 
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speckle image has its own probability distribution (Duncan, Kirkpatrick, Wang “Statistics 

of local speckle contrast”, JBO…). 

 

1.2.1 Time-varying speckles 

When there is motion in the scattering particles, the back-scattered beams coming from the 

moving particles will result in a variation or fluctuation in the speckle intensity with time. 

This fluctuation blurs the normally sharp speckles and reduces the contrast of the speckle 

image. This actually is the main concept in LSCI. The speckles whose intensity fluctuates 

in time are called ‘time varying speckles’. When monitoring a living organ, this reduction 

in contrast due to motion can be used to investigate the flow or motion. This method is 

called laser speckle imaging, which is the main subject of this work.  

In this method, the temporal statistics of speckle fluctuations gives us information about 

the motion. It is common to use temporal statistics; but in some cases the spatial contrast 

of the time integrated speckle patterns is worth using instead. 

 

1.3 Comparison with Laser Doppler 

Another method for analyzing intensity fluctuations is Lase Doppler Flowmetry. Both 

LSCI and LDF analyze the fluctuations coming from the moving particles. In the Doppler 

method, when the particles are moving, the detected intensity is frequency shifted and this 

frequency-shift will be recorded. The frequency of resultant signal is the frequency 

difference between each point and a reference beam. The reference beam can actually be a 

non-shifted light, which comes from the stationary part of the object. But in the case of 
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time-varying speckles, there is no frequency shift. The frequency is the same for the 

moving particles and the speckles. But the optical path lengths are different. The intensity 

difference in the speckles pattern for LSCI is because the scattered beam passes different 

optical path length to reach the detector. When there is motion in the imaging area, the 

moving particles cause the beam passes different optical path length and this difference 

causes fluctuations in intensity in speckle pattern.  

In the end, the mathematics behind these two methods is similar and both aim to find the 

relationship between velocity in the object space and the frequency of the fluctuations in 

the observation space.  In some ways, the two approaches are actually two different ways 

of looking at the same phenomenon. 

In Doppler method, in order to work with the temporal statistics of speckles, we have to do 

the measurements on a point-by-point basis. Thus, to have a map of fluctuations, we need 

to do the measurements for all the points. A method of scanning is required in this process. 

There are some devices on the market for that emply scanning Doppler velocimetry to 

provide a map of velocity.  Howver, the scanning process takes time, usually several 

minutes and makes the imaging method slow. LSCI solvesthis problem by being a full-

field imaging technique. It provides a map of relative velocity in a single shot, which makes 

this method a near-real time imaging method.  

 

1.4 Literature review on LSCI and math behind it 

LSCI was used for diagnosing various problems of the eye initially [18]. Existing methods 

at the time were invasive [19] and a non-invasive method to monitor the blood vessels in 

the retina [20, 21, 22] was desired. Double exposure speckle photography was the first 
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method proposed [23]. An effect was observed many years earlier that the contrast of 

speckles is reduced if speckles fluctuate, and this could be utilized to find velocity. At that 

time, single exposure speckle photography was proposed by Fercher and Briers [23, 24].  

In laser speckle photography the basic idea is that if there is flow in the imaging area the 

speckle pattern in the image will be blurred. This blurring depends on the relative velocity 

and exposure time [23]. Furthermore, the speckle pattern has high contrast in the area 

where there is no flow. Mathematically, the contrast can be written as a function of the 

ratio of characteristic correlation time and camera integration time [25]. There are some 

assumptions in this regard. Assuming the exponential distribution for the velocity will give 

us the following equation for contrast: 

Equation 1.2 

 

 

Assuming a Lorentzian velocity distribution of blood flow in vessels, Fercher and Briers 

plotted the intensity versus the ratio of correlation time and exposure time (Figure.1): 
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Figure 2: Speckle contrast vs. correlation time and camera integration time’s ratio 

(Fercher and Briers results and the correction curve according to Duncan and Kirkpatrick’s work). 

 

In the case of single exposure, the camera integration time is constant. It can be seen from 

this curve that the contrast is near zero when the correlation time is low and it trends 

towards unity when the correlation time is high. For a different assumed velocity 

distribution (e.g. a Gaussian) the general shape of the curve is the same, however, there is 

a small horizontal shift in the values [25]. 

As can be seen from this curve, the contrast is near zero when there is significant relative 

motion, and in the case of no motion the contrast reaches a maximum. In practice, it is not 

easy, or even possible in some situations, for the human eye to identify the contrast 

variations. Thus, for making these variations visible to the eye, a high pass filter was 

necessary.. This filter converted contrast variations to intensity variations. Using this filter, 

a large amount of light is diffracted when the speckle contrast is high and the light passes 
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throughout the lens when the contrast is low. In comparison to the raw images, blood 

vessels are more obvious in the processed version of the images after using this filter.  

The single exposure speckle photography was abandoned in the 1980s partially because of 

this long process. At that time, a method without the photographic stage was being 

investigated [26, 27]. Thus, laser speckle contrast imaging was born.  A simple optical 

setup was considered in this method. The object was illuminated by laser light and a CCD 

camera imaged the illuminated area. There are several parameters in the system that was 

under operator control. In the initial LSCI, camera integration time, size of speckles and 

the number of pixels were the parameters, which could be fixed by the operator [28]. If 

there was movement in the area under investigation, the intensity of those speckles 

fluctuated in time. A time-integrated image during a short exposure time was obtained 

using this method. The short exposure time makes the LSCI a near-real time technique. 

Speckle size in comparison to the pixel size is an important factor to be determined. The 

best cooperation in this case is when the speckle size is at least 2 times of the pixel size 

[23].  

Although LSCI is a simple, fast and cheap method, it has some challenges [29]. For 

example, it is not obvious if LSCI is sensitive to flow or velocity. And also, the results are 

not robust and without some means of calibration, absolute values for flow or velocity are 

impossible to quantify. In or der to make LSCI a more quantitative too,  especially in 

comparison to the laser Doppler flowmetry (LDF), these isues, along with otheres need to 

be resolved [30]. LDF uses temporal statistics instead of spatial statistics and the power 

spectrum is analyzed in this method [23,20]. 
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The underlying concept of LSCI is the association of the camera integration time and the 

speckle contrast [25]. In order to calculate the local contrast, the intensity is calculated by 

an integration of the instantaneous intensity over a rectangular window.  

Equation 1.3 

 

        

 

In these equations T is camera integration time. Recall that contrast is defined as Equation 

1.1.  To create a contrast image, the contrast should be calculated for each pixel using 

Equation 1.1. Thus, the standard deviation and the mean intensity are the parameters to be 

calculated. According to the statistical equations, the mean intensity is equal to the 

expectation of the intensity , and we have the equation below for : 

Equation 1.4 

 

And in order to calculate standard deviation, we need variance: 

Equation 1.5 
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where denote the covariance of the instantaneous intensity and  is the expectation. 

The complex Gaussian moment theorem can be considered under the assumption that the 

instantaneous intensity is due to scatter from a very large number of particles.  The complex 

Gaussian moment theorem expresses the fourth order statistical moment in terms of 

products of second order moments: 

Equation 1.6 

 

This relationship is known as Siegert relation. Another assumption that should be 

considered here is to assume Brownian motion for the scattering particles velocity. 

According to this assumption: 

Equation 1.7 

 

where 𝜏𝜏𝑐𝑐 is the characteristic correlation time, which depends on the mass of particle and 

frictional forces. Thus, the covariance is: 

Equation 1.8 

 

And finally for the contrast we have: 

Equation 1.9 
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This approach has a fundamental issue, which the assumption of having the exponential 

correlation function related to Brownian motion for the ordered flow. Fercher and Briers 

pointed out that the contrast is in a Lorentzian shape under the assumption of an exponential 

correlation function.  

 

Figure 3: Contrast for the Lorentzian distribution function. 

 

If we considered the ordered flow as an inhomogeneous broadening phenomenon, the line 

shape for the ensemble of scatterers is Gaussian and in this case, the correlation function 

is Gaussian too. 

Assuming the Gaussian model for the covariance of instantaneous intensity leads to: 

Equation 1.10 

 

The measured contrast is shown by: 

Equation 1.11 
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And the contrast curve under the assumption of a Gaussian correlation function is shown 

in the figure below: 

 

 

Figure 4: Contrast for the Gaussian distribution function. 

 

The significant differences between the Lorentzian and Gaussian correlation function is 

shown in the image below. As we can see from the two curves, these too line shapes are 

slightly different but they have identical same dynamic ranges and overall similar shapes. 

The real correlation function for the ordered flow is likely a mixture of these too correlation 

functions and the true model may be the convolution of these two line shapes. 
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Figure 5: Comparison of the contrast for the Lorentzian and Gaussian distribution 

function (the red curve is Lorentzian and the blue one is Gaussian). 

 

The final goal in LSCI is to measure velocity. But there are some common errors in this 

method that prevent it from being a quantitative tool [25]. The first one is a persistent 

mathematical error, which is missing a triangular window in the variance equation. The 

actual variance according to what we discussed earlier should be defined as: 

Equation 1.12 

 

But the triangular window in the Fercher and Briers work was missing and the resultant 

contrast was: 

Equation 1.13 
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Which is different from what we had earlier: 

Equation 1.14 

 

Another problem is that there is not a proper statistical model for the unordered flow [31]. 

Some workers consider it to be similar to the ordered flow and assume Lorentzian function 

for the unordered flow, too. In some works, this statistical behavior considered as Gaussian 

distribution. But in reality, the actual statistical behavior of the flow lies somewhere 

between Gaussian and Lorentzian. 

The third problem on the way of LSCI to becoming a truly quantitative tool is the 

relationship between correlation time and flow velocity. LSCI is based on the relationship 

between contrast and speckle movements. The concept is to infer a correlation time from 

the contrast image. This correlation time and velocity are inversely proportional; but there 

is no substantial equation to show this relationship. A suggested relationship is: 

Equation 1.15 

 

where 𝜆𝜆 is the wavelength of the laser light used in the experiment. It means the correlation 

time is the quotient of wavelength as a physical length scale and the velocity. Since the 

desired output of LSCI is the velocity values, the mathematical errors should be solved, a 
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proper distribution function should be considered for the flow and the relationship between 

the time constant and velocity should be defined.  

 

1.5 Effects of optical properties on LSCI 
If there is no flow in the imaged area in laser speckle contrast imaging, there will be 

maximum contrast in the speckle pattern, because effect of static scatterers is maximum. 

But if there is flow (or other motion) in imaging area, the intensity of each moving speckle 

fluctuates from its original intensity. Thus, the number of moving particles will have an 

effect on LSCI. Changing the number of scattering particles alters the optical properties of 

the imaged sample. This aim will consider the effects of optical properties on the observed 

contrast in laser speckle contrast imaging. The effects of optical properties such as the 

scattering coefficient, absorption coefficient and anisotropy of scattering will be 

investigated through numerical simulations and experimentation. 

 

1.5.1 Literature review on optical properties  

Propagation of light in biological tissues is an important consideration in medical optical 

imaging [3]. When light interacts with biological tissue, it can be scattered, absorbed or 

both [4, 5].  

Light propagation in biological tissues can be describes by Boltzmann equation that consist 

of three optical properties, scattering coefficient, absorption coefficient and anisotropy of 

scattering [6]. Various experimental methods for measuring these optical properties have 

been proposed [7, 8, 9, 10]. In this work, we use a modified Lambert-Beer law to estimate 

the scattering coefficient through the experiments [11]. This law technically only applies 
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to absorption; but in this work we use a modification of Lambert-Beers law to discuss about 

both absorption and scattering. 

The scattering coefficient reveals the inverse of the mean distance a photon travels in a 

scattering medium before being scattered and can be approximated with the Lambert-

Beer’s law. In an absorbing medium, the Lambert-Beer’s law relates the radiant power to 

the path length of the beam and to the concentration of the absorbers (chromophores), 

respectively. This law can be shown by this equation: 

Equation 1.16 

 

where  is the absorption coefficient and  is the geometrical distance light travels 

through the media. If we use the modified Lambert-Beer’s law for absorption and 

scattering, the equation above can be shown as: 

Equation 1.17 

 

Where  is the absorption coefficient,  is the scattering coefficient,  is the sample 

thickness,  is the intensity without any sample in the experiment and is the intensity 

when a sample with 𝑧𝑧 thickness is using for the experiment. 

At the wavelengths of interest in this work, the scattering coefficient usually is much 

greater than the absorption coefficient. Thus, in the experiments, in order to measure the 

scattering coefficients, the absorption coefficient can be ignored when we only have 
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samples with scattering particles. Assuming that  is zero, lead to an expression for 

scattering coefficient: 

Equation 1.18 

 

This equation alongside the optical setup, which will be shown in the next part, will help 

us to approximate 𝜇𝜇𝑠𝑠 in purely scattering media.  

The optical properties associated with tissue types in human body are related to both 

location and direction of the scattered beam from the tissue [12]. Anisotropy of scattering 

𝑔𝑔 is the factor that can illustrate the direction of scattering. If θ is the angle of scattering, 

anisotropy of scattering can be defined as the average cosine of θ: 

Equation 1.19 

 

 Note that we ignore azimuthal scattering in this simple relationship.  For a more complete 

description of 𝑔𝑔, a phase function should be defined which gives the probability density 

function of scattered light in different angles [13] over 4 steradians. This phase function is 

a measure of anisotropy of scattering and can give intensity for each direction. If 𝑔𝑔 =1.0, 

the scattering angle is zero and the beam of light will pass through the medium without 

changing direction and we will have exact forward scattering. If , the mean scattering 

angle is 90° and the scattering is isotropic.  

It is common to employ a phase function when discussing scattering anisotropy.  The 

Henyey-Greenstein function [14, 15] is commonly employed in biological applications. 
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This function introduces a phase function with parameter , which can be varied from -1 

to 1. The scattering in this range varies from backscattering to forward scattering. The 

Henyey-Greenstein function is defined as: 

Equation 1.20 

 

Which is the probability density function and  is the angle between the direction 

photon travels before the scattering event and after that. So, the anisotropy of scattering is 

defined as: 

Equation 1.21 

 

Different methods were developed to calculate the scattering anisotropy. The most 

common technique, which we are using in our work, is the goniometry. In the experimental 

design section we will discuss about this method. 

The absorption coefficient is another optical property, which we are going to address its 

effects on laser speckle contrast imaging [4]. Analogous to the scattering coefficient, the 

absorption coefficient is a measure of the inverse mean distance a photon travels in a 

medium before it is absorbed. A low absorption coefficient means that there is a small 

amount of absorption of light for that specific tissue. This parameter depends on the 

material that is illuminated and the wavelength of light. The absorption coefficient is not 

constant for different wavelength. 

The absorption coefficient can be calculated using this equation: 
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Equation 1.22 

 

In this equation 𝜀𝜀  is the extinction coefficient and  is the concentration of the 

chromophore(s). Also, Lambert-Beer’s law can help us to measure absorption coefficient 

by removing all the effects related to scattering. Assuming no scattering leads to the 

absorption coefficient using the equation below: 

Equation 1.23 

 

As we mentioned earlier, optical properties could have effects on laser speckle contrast 

imaging [12]. We know that if there are some moving particles in the imaging area, the 

contrast decreases. Thus, there is a relationship between the number of moving particles or 

concentration and the resultant contrast. In this part of our work we will change the number 

of moving scatterers and see the result. Changes in scatterer concentration will change the 

optical (scattering) properties. Herein, we will consider the effects of optical properties on 

the laser speckle contrast imaging. Scattering coefficient, absorption coefficient and 

anisotropy of scattering are the optical properties we are going to address their effects on 

LSCI.  
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Chapter 2 

Samples and Experimental setup 

 

2.1 Introduction 

Laser speckle contrast imaging (LSCI) is a non-invasive method to monitor blood flow. A 

two dimensional map of blood flow is produced by using this method in a relatively short 

time [1]. The theory is based on inferring a temporal correlation time from the speckle 

contrast and then finding a relationship between this time constant and the flow velocity. 

There are several outstanding issued regarding this method that will be investigated in this 

work. In order to examine the effects of optical properties on LSCI we need appropriate 

samples and experimental setup. In this chapter we will introduce the samples we used in 

our experiments and the different optical setup for each set of experiment. 

 

2.2 PVA and lipid samples to measure scattering coefficient  

A key component of this research was developing suitable phantom materials that would 

mimic the absorption and scattering properties of blood and biological tissue.  Poly Vinyl 

Alcohol (PVA) and lipid solutions with varying lipid concentrations were two materials 

we initially investigated as phantom materials.   



www.manaraa.com

41 

Optimizing the number of freezing and thawing cycle of PVA solutions is a technique to 

vary the scattering properties of PVA.  Our initial goal was to create PVA samples with 

optical properties similar to the properties of the tissue in human female breast. 

The simple process of freezing and thawing of the PVA samples results in a gel sample 

whose mechanical strength gradually rises with the number of freezing and thawing cycles. 

By increasing the number of cycles, the sample changes from a clear gel to an opaque one.  

A firming phenomenon happens during these processes and makes the sample rigid and 

turbid. 

An appropriate amount of PVA and water was heated to gain a solution with concentration 

of 20% by weight [37]. A temperature of 95 degrees of Celsius is needed and the solutions 

were heated for two hours with constant stirring. The solutions were left standing for 2 -3 

hours in order to let all the bubbles move to the surface of the solution. Finally, the solutions 

were placed in a freezer at -20 degrees Celsius for approximately 12 hours. Repeated 

freezing and thawing cycles increased both the optical scattering and the mechanical 

strength and stiffness of the samples. 

We made samples with 0 to 4 freeze-thaw cycles and did the experiments using these 

samples using red diode laser with a 660nm center wavelength for these experiments, we 

needed thin samples. Thus, we made hand-made cuvettes and used them during the 

experiments. 
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Figure 6: hand-made cuvettes 

 

We made lipid phantoms by adding different milk concentration to DI water. The initial 

lipid concentration of milk was 2% and we made 10 different phantoms of 0.1% lipid to 

2% lipid phantoms. 

These samples were actually replaced later on with new samples called Luxil microspheres 

and a plastic bar instead of PVA samples. The reason we changed the lipid samples was 

because we wanted to be able to make 121 different samples and keep them for a long time 

to be able to redo the experiments several times. The lipid solutions did not let us keep 

them for more than a few days. Thus, we switched to a new type of microspheres, which 

are glass microspheres with brand name Luxsil. These microspheres have diameter of 9-

13 microns with the average diameter of 11.7 micron, which is close to the diameter of red 

blood cells. We made our solutions with these new particles. The results will be shared in 

the following chapters. Also, we used a plastic bar instead of PVA samples, since our goal 

was to keep all the other experimental parameters constant, but the optical properties of 

PVA samples change during the time. So, a plastic bar sounded like a better idea to mimic 
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the tissue in the imaging section. Luxsil microspheres and the new experimental setup will 

be discussed in more detail later in this work. 

 

2.3 Experimental design 

2.3.1 Optical setup to measure optical properties 

The optical properties were being measured by ballistic transmission. A simple optical 

setup for scattering coefficient measurement is shown in this image: 

 

 

Figure 7: Optical setup for scattering coefficient measurements. 

 

 In this system, we use a red diode laser source of 660nm wavelength. A synchronous 

detection scheme was used employing a lock-in amplifier and an optical chopper.  The 

purpose of this detection scheme was to improve the signal-to-noise ratio.  An added 

benefit of this detection scheme was that the room lights were able to be left on. Neutral 

density filters were used in this optical setup to decrease the intensity of light impinging 
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on the detector, not only to prevent saturation, but also because the high intensity can 

damage the detector. A sensitive detector is needed to detect low intensity beams in the 

case of higher FTC samples. Also, an aperture was placed immediately in front of the 

detector so that only unscattered light reached the detector. 

The goal of these experiments was to calculate scattering coefficient. Scattering coefficient 

 can be obtained from a modified Lambert-Beer’s law: 

Equation 2.1 

          

Equation 2.2 

 

The equation above shows the relationship between the output voltage and . It is 

necessary to mention that z is thickness of the sample and  is the intensity with just a 

cuvette filled with water in the experiment. 

 

2.3.2 LSCI Experimental Setup 

According to what was stated in the previous sections, our objective in this part is to 

consider the effects of scattering coefficient on the contrast or generally on laser speckle 

contrast imaging. In order to investigate this effect, we use the LSCI optical setup using a 

plastic bar sample with a capillary on top which a liquid phantom ran through. In this part, 

other parameters during the experiment held constant and the only parameter, which is 
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going to be changed, is the scatterer concentration. Changing the scatterer concentration 

will change the scattering coefficient and as a result, contrast variation will be examined. 

The following image (Figure 8) illustrates the laser speckle contrast imaging optical setup 

used in our lab. As this image shows, a solid plastic phantom with glass tubing on top is 

used as the sample, which is illuminated by a laser diode of 660nm wavelength. The sample 

is imaged using am 8-bit Point Grey Dragonfly CCD camera. The magnification and f/# of 

the camera held constant during the experiments. The magnification was 2 and camera’s 

f/# was fixed on f/32. The fluid phantom solutions run through the tubing by means of a 

mini peristaltic pump and this pump controls the fluid flow, which was held constant for 

the experiments. Neutral density filters are used in this optical setup to control the intensity 

of the incident light to prevent camera saturation. 

 

 

Figure 8: LSCI optical setup. 

 

2.3.3 Imaging setup in detail  
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A camera with a macro zoom lens was mounted to a vertical stage, observing the sample 

normally. The camera was focused at the center of the glass tube. A laser diode with a 

collimation kit is then set up so that divergent laser light illuminates the object. In this 

work, red laser light was used because it was easier to demonstrate how to build the system, 

but infrared laser light could just as easily be used and would have the additional benefit 

of penetrating deeper in tissue. Also, with appropriate filters in front of the camera to block 

visible light, infrared light could be used with the room lights on. 

In laser speckle contrast analysis, a laser illuminates the sample under test.  The scattered 

light from the sample returns to a camera sensor and produces a dynamic speckle pattern. 

LSCI is a predominantly single scatter technique. The camera records the intensity at the 

detection point and the aperture of the lens controls the speckle pattern. 

 

2.4 Luxil microspheres samples 

In order to conduct these experiments repeatedly and efficiently, we wanted to make 

solution to be able to keep them for a longer time than lipid or PVA samples. We started 

our experiments using those samples, but since they are not convenient to be used for 

different experiments during days, we needed to come up with a new scattering liquid 

phantom. We choose glass microspheres with the brand name of Luxsil. Luxsil is cosmetic 

hollow glass microspheres from Potters Company. The spherical shape of these 

microspheres, their diameter and the color made them appropriate to use as scatterers. In 

our experiments the scatterers should mimic red blood cells in terms of physical dimensions 

as well as optical properties. Luxsil, with the diameter of 11.7 microns is approximately 
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the same physical dimension as red blood cells. The table below shows the technical 

information about Luxsil: 

 

Table 1: Luxsil microspheres technical information 

Shape Sphere 

Density 1.1 g/cc nominal 

Size 9-13 micron 

Color White 

Crush strength >10,000 psi 

INCI Name Calcium aluminium borosilicate 

Chemical Resistance Low alkali leach, insoluble in water 

 

2.4.1 Mie scattering calculator to predict concentration 

 In this section, we use Mie Theory to estimate the optical scattering properties of the Luxsil 

microspheres.  We used the well-established Mie calculator by Scott Prahl from the Oregon 

Medical Laser Center (omlc) website to calculate the scattering coefficient of the 

microspheres. The diameter of these microspheres and their density are known from the 

spec sheet provided by the manufacturer. Using this information and the calculator we 

wanted to solve the inverse problem and determine the necessary concentrations of the 

Luxsil solutions to approximate the scattering coefficient whole blood at different 

hematocrit levels. After these calculations, the solutions with different concentrations were 
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be made in the lab and the corresponding scattering coefficient was measured. At the end, 

comparing the results from the calculator and the lab will be our point of interest. 

 

2.4.2 Mie Theory a model for optical properties in tissue 

Mie theory can be introduced as a model to describe the optical properties. It actually 

describe slight scattering by particles. “Particles” in this case means a combination of a 

region with refractive index of  surrounding by another region with the refractive index 

of . Electron oscillation in the molecules causes a dipole re-radiation pattern that leads 

to a strong net source of the scattered beam. These scattering radiations do not cancel each 

other in all but results in both constructive and destructive radiation patterns. Thus, 

particles scatter the incident light beam in various directions and with varying efficiency. 

The ratio of the refractive indices between the particles and the surrounding material is 

called “magnitude of refractive index mismatch”: 

Equation 2.3 

 

 

The other important parameter we can define is the “size of the surface of refractive index 

mismatch” which is the ratio of the circumference of the sphere to the wavelength of the 

light in the medium: 

Equation 2.4 
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To calculate the scattering coefficient using Mie theory calculation, first, the efficiency of 

scattering is defined as: 

Equation 2.5 

 

 

Which in this equation is efficiency of scattering,  is the cross-sectional area of 

scattering and  is the true geometrical cross-sectional area of the particles. 

 

Figure 9: geometrical and effective cross section of a scattering phenomenon 

Finally, the scattering coefficient which introduced the average distance photon travels in 

tissue before being scattered, is shown as: 

Equation 2.6 
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which  is the scatterer number density and is the geometrical cross-sectional area of 

particles.  

 

2.4.3 Math behind Mie scattering 

Consider the “scattering plane” as a three dimensional plane which is defined by an 

observer. Then, consider a source and a spherical particle. When the incident light reaches 

the particle it will scatter and shrink to its components. These components can be parallel 

or perpendicular to the scattering plane. As shown in this figure: 

 

Figure 10: The scattering three-dimensional plane 

The scattering matrix depicts the association between incident and scattered components, 

which are perpendicular or parallel to the scattering plane in the “far field”: 

Equation 2.6 
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In the above expression, the exponential term, is a transport factor which is related to the 

distance between observer and scatterer. The transport factor is constant if the scattered 

light is measured from a constant distance from the scatterers. In this case: 

Equation 2.7 

 

 

For the observation in the far field at a distance r from the particle of diameter d, when 

,  and  the scattering elements of and  are equal to zero. 

In practical experiments we actually measure the intensity. In order to measure the 

intensity, we use this equation:  

Equation 2.8 

 

 

where .  is phase and  is amplitude. So, the final equation will be: 

Equation 2.9 
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According to the mathematics we introduced above, we can write a code to do the 

calculation of scattering coefficient using Mie theory. Also, there are some already written 

codes, which are on-line such as Wiscombe’s code [http://omlc.org/software/mie/] that can 

be used to do the calculations. But, Scott Prahl wanted to be able to do the calculations 

without needing to compile Mie code each time, he created an interactive web page that 

allows everyone to do their own Mie scattering calculations. 

This interactive webpage called Mie theory calculator is available on Oregon Medical 

Laser Center’s website (http://omlc.org/calc/mie_calc.html). In this work we used this 

calculator to measure the scattering coefficient of Luxsil microspheres solutions with 

different concentrations. 

 

2.4.4 Calculations using Mie calculator 

The parameters used in the Mie calculator for the Luxsil microspheres are listed below. 

The third column in the first table shows the units of each parameter. 

The second table illustrates the result of Mie calculator for the specific concentrations. The 

anisotropy of scattering was given by the Mie calculator according the particles technical 

properties. 

 

Table 2: Mie Scattering Calculator input parameters. 

Sphere diameter 11.7 Micron 

Wavelength in vacuum 0.660 Micron  

Index of refraction in medium 1.5  

Real index of sphere 1.51  



www.manaraa.com

53 

Imaginary index of refraction 0  

Number of angles 100  

Concentration ? Spheres/cubic micron 
 

Table 3: results from Mie scattering calculator.  

Concentration is the number of spheres per cubic micron in this table. 

Concentration (1/mm) g (1/mm) 

0.00001 0.62615 0.99923 0.8223 

0.00002 1.2523 0.99923 0.8381 

0.00003 1.8785 0.99923 0.8458 

0.00004 2.5046 0.99923 0.8534 

0.00005 3.1308 0.99923 0.8610 

0.00006 3.7569 0.99923 0.8686 

0.00007 4.3831 0.99923 0.8763 

0.00008 5.0092 0.99923 0.8839 

0.00009 5.6354 0.99923 0.8915 

0.00010 6.2615 0.99923 0.8989 
 

which, g (anisotropy of scattering) is given by Mie calculator. 

3.4.5 Formulation of samples 

According to the information we have for the Luxsil, we are able to estimate the mass of 

one particle using the simple math below: 

Equation 2.10 
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The concentration using in Mie calculator is considered as spheres per cubic micron. 

Having the mass of one particle will help us to calculate the amount of Luxsil we need for 

each solution with a specific concentration. 

The fluid phantoms were mixed in 90mL containers. In order to have the amount of Luxsil 

powder for solutions we need to multiply the mass of spheres needed by the volume in 

cubic microns. Table below shows the concentrations we formulated in g/mL: 

 

Table 4: Calculated concentration of Luxsil solutions. 

Concentration 

(Spheres/cubic micron) 

Amount of Luxsil  

(mg/mL) 

Concentration 

0.00001 0.00922 0.92% 

0.00002 0.01844 1.84% 

0.00003 0.02766 2.76% 

0.00004 0.03688 3.68% 

0.00005 0.0461 4.61% 

0.00006 0.05532 5.53% 

0.00007 0.06454 6.45% 

0.00008 0.07376 7.37% 

0.00009 0.08298 8.29% 

0.00010 0.0922 9.22% 
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In order to make the samples, we multiplied the amount of Luxsil in this table with the 

volume and add that amount of Luxsil to the DI water. The resultant concentrations in the 

above table is the ratio of the mass of Luxsil microspheres to the mass of water. Figure (12) 

shows some sample phantoms we made in the lab: 

 

 

Figure 11: phantom solutions of Luxsil microspheres 

 

2.4.6 New experimental setup  

In the process of improving our experimental design, we developed a new LSCI setup. We 

placed the laser, microscope objective and a polarizer on a small optical breadboard and 

the plate mounted on an articulated arm, which made the system easier to move in order to 

fix the alignment. The image below (Figure 13) shows the new optical system.  
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Figure 12: Final LSCI setup 

 

2.5 Absorption coefficient  

In order to measure absorption coefficient we used India ink as absorber. We added 10 

different amounts of India ink to a Luxsil solution with known scattering coefficient. The 

goal here was to mimic the absorption coefficient of blood with various hematocrit levels.  

Using ballistic transmission we measured the attenuation coefficients of the new samples. 

Then, we calculated the absorption coefficients of the samples by subtracting the scattering 

coefficient of the Luxsil solution from the attenuation coefficient. According to Lambert-

Beer’s law: 

Equation 2.11 

 

And we also have: 
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Equation 2.12 

 

We have scattering coefficient and total attenuation coefficients from the experiments. 

So, the absorption coefficient would be: 

Equation 2.13 
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Chapter 3 

Results 

 

3.1 Introduction 

As we mentioned in previous chapters, the goal in this work was to measure optical 

properties of some samples and find the effects of these optical properties on LSCI contrast 

values. Samples and experimental design was introduced in the previous chapters and now 

it is time to depict some results. The results of the optical properties measurements come 

first and then we will see how these properties effect contrast in LSCI images.  

 

3.2 Scattering Coefficient Measurements  

3.2.1 PVA samples 

In order to investigate the effects of optical properties on LSCI, as a first step, the 

measurement of these optical properties is necessary. Scattering coefficient can be 

calculated in the lab for PVA and lipid solution samples using ballistic transmission. PVA 

samples are the samples considering them as tissue and lipid solutions are indicating blood 

with different hemoglobin concentration [44]. We made PVA samples in the lab and did 

the process of freezing and thawing them for several times for different samples.  

The experiments were done for 5 freeze-thaw cycles (0 to 4) for four different samples. 

The scattering coefficient was measured using Lambert-Beer’s law. The plot below shows 
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scattering coefficient versus number of freeze-thaw cycles for four different samples. Each 

set of dots with the same color introduces a sample. As can be seen from this plot, by 

increasing the number of freeze-thaw cycles the scattering coefficient increases.  

 

Figure 13: Scattering Coefficient for different freeze-thaw cycle’s samples. 

 

3.2.2 Lipid solutions 

In order to consider optical properties of blood, we decided to use different lipid solutions. 

This approach helps us to guess the optical properties of blood using these solutions.  

For this purpose, at first, we made a solution with 0.04% lipid concentration and continued 

making these solutions by increasing the percentage of lipid. At the end, we did the 

experiment for 2% lipid concentration and calculated the scattering coefficient for these 

solutions. Results are shown in this curve: 
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Figure 14: Reduced Scattering coefficient for different lipid solutions. 

 

The following table demonstrates the numerical values of scattering coefficient and 

reduced scattering coefficient measured through the experiments. Furthermore, 𝑔𝑔  was 

measured for lipid particles using the goniometry method and is equal to 0.76. Also, 

reduced scattering coefficient was calculated using this Equation 3.1[33]: 

Equation 3.1 

 

 

Table 5: Scattering coefficient and reduced scattering coefficient for the solutions with 

different lipid concentrations (g=0.721). 

Percentage  (1/mm)  (1/mm) 

0.04% 0.2 0.0558 
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0.1% 1.2 0.3348 

0.2% 2.56 0.7142 

0.4% 2.65 0.7393 

0.6% 2.77 0.7728 

0.8% 2.9 0.78 

1% 3.04 0.8091 

1.4% 3.21 0.8955 

1.6% 3.22 0.8983 

1.7% 3.38 0.9430 

1.8% 3.42 0.9541 

2% 3.60 1.0044 

 

During this research, we examined techniques to take off the behavior of skin and blood 

by making PVA phantoms produced with various numbers of freeze-thaw cycles and lipid 

solutions with various concentrations [34]. As proof of concept of such a PVA phantom, 

we had created a layered phantom composed of a 2mm layer of PVA that had undergone 

four freeze-thaw cycles. By increasing the number of cycles, optical scattering and 

mechanical stiffness are increased. As we can see from the curves,  by increasing the 

number of cycles increases. The mechanism behind the changing properties is the 

gradual change in the gel from an amorphous to crystalline polymer. The crystalline nature 

remains in place even following thawing. After the thawing process, the porosity also 

increases due to the melting of water phase, leading to increase turbidity. 
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3.3 Scattering anisotropy, 𝒈𝒈, measurement using goniometry 

For anisotropy of scattering measurements we used a set of samples with different number 

of freeze-thaw cycles. A goniometry method was utilized in the experiments. We made 

three different samples; the freezing and thawing process was done three times for each 

sample and the goniometry measurement repeated three times for each freeze-thaw cycle 

of each sample. It means at the end we had nine sets of data for each freeze-thaw cycle 

sample. A curve fitting method using the Henyey-Greenstein phase function was applied 

to each set of data to have the final phase function. Curves below show the actual data 

collected in the lab and the corresponding fitted curve to that set of data. Left curves are 

for a single set of data for each sample and right curves show the nine sets of data for that 

sample with the final curve averaging over the other nine curves.  
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Figure 15: Raw data and the fitted curve (left figures) and the final curve (right figures) 

for 3 different freeze-thaw cycles samples.  

 

This table shows the results of anisotropy of scattering experiment for three different 

freeze-thaw cycle samples: 

 

Table 6: Anisotropy of scattering for 3 different freeze-thaw cycle’s samples. 

No. 1 FTC 2 FTC 3 FTC 

1 0.9159 0.7303 0.5269 

2 0.8861 0.741 0.5336 
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3 0.8593 0.7557 0.5343 

4 0.8163 0.7813 0.5485 

5 0.7285 0.7833 0.5671 

6 0.722 0.6793 0.5478 

7 0.6945 0.6417 0.3082 

8 0.6901 0.5463 0.3051 

9 0.6845 0.5645 0.3795 

 g=0.77 g=0.69 g=0.47 

 

3.4 Effects of scattering coefficient on contrast  

As we can see from the results of the last section, increasing the lipid concentration 

increased the scattering coefficient. Increasing the lipid concentration means that we have 

more lipid molecules in the imaging area. So, we will have more scattering and also a larger 

scattering coefficient. Having a large scattering coefficient shows that the probability of 

scattering is high in that regime and the contrast will be lower in this case. 

For this purpose, the LSCI optical setup was used in the lab [35]. The speckle pattern and 

the resultant contrast image are: 
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Figure 16: The speckle pattern (left) and the resultant contrast image (right). 

 

3.4.1 Representative Results  

In the figure below, the first image shows an example of a typical raw speckle image and 

a converted speckle contrast image that should be generated when using the software to 

examine in the brain [36]. For visualizing changes in blood flow, it is easier to have the 

software generate relative maps of blood flow. The second figure shows a typical series of 

relative blood flow images during a transient increase in blood flow that travels across the 

field of view. The blue color represents a decrease in contrast when we have motion in the 

imaging area. The yellow color indicates that there is no movement in the imaging area. 

All the parameters held constant during the experiment and just the lipid concentration was 

supposed to change. This phenomenon checked for eight lipid solutions with different lipid 

concentrations. Images below are the four examples of the results and show the change in 

contrast due to changes in scattering coefficient: 
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Figure 17: The contrast image for different lipid solutions with different milk 

concentration (The top left image is for water, the top right image is for 0.1%, the bottom 

left is for 1% and the bottom right is for 2% lipid solutions). 

 

The top left image is the contrast when we had water running in the tubing. Also, we 

calculated the local contrast with a MATLAB program for all the images and the resultant 

curve depicted below: 
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Figure 18: Contrast vs. reduced scattering coefficient. 

 

According to this curve, by increasing the scattering coefficient contrast decreases. Thus, 

the scattering coefficient of the moving fluid influences the contrast values in LSCI and an 

increase in scattering coefficient leads to a decrease in contrast. One of the parameters 

which held constant was the flow and as can be seen from the images and the curve, 

identical flow speeds will result in different contrast values when the scattering coefficient 

changes. Each of those images have static and moving scatterers which they are in the same 

depth of field. 
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Figure 19: Sample’s cross-section. 

 

The image above shows the cross section of our sample. The moving and static part of the 

sample are in the same depth of field. By increasing the percentage of moving scatterers or 

increasing scattering coefficient, the influence of static scatterers on the contrast is reduced. 

Therefore, the contrast in the moving part is lower when the scattering coefficient is higher. 

Another idea to address the effects of scattering coefficient on contrast is to change the 

static scatterers. In the previous part we tried to change the number of moving particles and 

address the effects of that on LSCI. According to this new idea, we can change the number 

of static scatterers using differnet numbers of tapes on top of the sample and test the effects 

of different numbers of scatterers.  

 

3.5 Absorption coefficient results and error propagation 

3.5.1 Error propagation 

When we suppose to measure the addition or subtraction of some quantities with different 

uncertainties, the final error propagation should be calculated in a certain way. We cannot 

simply add or subtract the uncertainties since it will be actually an overestimate of the 
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uncertainty in addition or subtraction. If the measured quantities are and  with 

uncertainties  and , the error for final quantity of  which is defined as: 

Equation 3.2: 

 

 

Will be calculated using equation below: 

Equation 3.3: 

 

 

In our case, we were measuring optical properties, , and . We measured  and 

with known uncertainties  and . In order to measure the error for , , we 

can follow equation 3.4 since we have: 

Equation 3.4: 

 

Then would be: 

Equation 3.5: 

 

 

 

Table 7 shows the error propagation for 10 different and 10 corresponding s. In this 

table and are  and .  
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Table 7: Error propagation calculations ( ) 

 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
 4.8051 4.8087 4.80258 4.832 4.8391 4.844 4.8448 4.8519 4.888 4.8954 

 0.042 0.027 0.061 0.04 0.032 0.023 0.037 0.055 0.036 0.071 

 0.0051 0.0087 0.0258 0.032 0.0391 0.044 0.0448 0.0519 0.088 0.0954 

 0.058 0.048 0.072 0.056 0.051 0.046 0.054 0.068 0.053 0.043 
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Abstract Several variables may affect the local contrast values in laser speckle contrast 

imaging (LSCI), irrespective of relative motion. It has been suggested that the optical 

properties of the moving fluid and surrounding tissues can affect LSCI values. However, a 

detailed study of this has yet to be presented.  In this work, we examined the combined 

effects of the reduced scattering and absorption coefficients on LSCI.  This study employed 

fluid phantoms with different optical properties that were developed to mimic whole blood 

with varying hematocrit levels. These flow phantoms were imaged with an LSCI system 

developed for this study. The only variable parameter was the optical properties of the 

flowing fluid. A negative linear relationship was seen between the changes in contrast and 

changes in reduced scattering coefficient, absorption coefficient and total attenuation 

coefficient. The change in contrast observed due to an increase in the scattering coefficient 

was greater than what was observed with an increase in the absorption coefficient. The 

results indicate that optical properties affect contrast values and that they should be 

considered in the interpretation of LSCI data. 

 

Introduction 
 
Laser speckle contrast imaging (LSCI) is a low cost and non-invasive method used to 

monitor blood perfusion and blood flow.1-3  This method has a wide field of view and it is 

efficient and simple for full-field monitoring. The simplicity of LSCI along with its high 

spatial and temporal resolution allows it to be used as a powerful tool to measure, monitor 

and investigate living processes in near real-time. The concept behind this method lies in 

the mathematical relationship between moving particles (e.g., red blood cells) in the object 

space (i.e, the blood vessel) and the translating or ‘boiling’ speckles in the image plane.  
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When there is motion in the object space, the intensity of speckles in the image space 

fluctuates over time. It is these time-varying speckles in the image space that encode the 

motion in the object space. In time varying, or dynamic, speckle patterns, the speckle is 

blurred during the finite camera integration time and the spatial variation, or contrast, in 

intensity is thereby decreased.  Contrast in LSCI is typically defined as: 

I
r

I

K σ
µ

=                                                                   (1) 

where  is the mean intensity of a small window (7 x 7 in this work)4 of pixels centered 

at location r and is the standard deviation of the intensity over the same window.1  In 

practice, this window is slid on a pixel-by-pixel basis over the entire speckle image yielding 

a final spatial contrast image. In LSCI, the contrast of the speckle images is lower in regions 

displaying motion relative to static regions. For a polarized speckle pattern, 1.0 ,I Iσ µ= =  

yielding an expected value of 1.0 .rK =  1-3 It should be noted that this expectation, 

however, has its own statistical distribution.4 When there is motion in the scattering 

particles, the shifting back-scattered waves coming from the moving particles will cause a 

temporal variation in the speckle intensity. This fluctuation results in a blur of the speckle 

pattern, and thereby, a reduction in Kr.  

 In a previous publication,5 using arguments from mass transport theory, it was 

demonstrated that the contrast values calculated in LSCI are sensitive to the sum of 

diffusive flux and advective flux in the circulation.  In that paper,5 we argued that the 

diffusion with drift equation6 adequately describes the physical phenomena to which LSCI 

is ultimately sensitive to.  The steady state diffusion with drift equation can be written 

without any loss of generality in 1-dimension as 
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[ ] [ ] ,KK x
cJ D v c
x

∂
= − +

∂
                                                        (2) 

where KKJ is the total flux, the first term on the right hand side (RHS) of Eq. (2),  [ ]cD
x

∂
−

∂

, describes the diffusional flux, LJ , component of KKJ  and the second term on the RHS 

of Eq. (2), [ ]v c , describes the advective flux, GJ ,  and is the product of the velocity, v , of 

the fluid and the concentration, [ ]c , of the scatterers suspended in it.    This term, [ ]v c , 

describes ordered motion of the particles and the dynamic behavior of the individual 

particles is unique to the individual scatterers, whereas the LJ term describes random 

motion of the particles and the behavior of an individual scatterer is representative of the 

scatterer population as a whole.7 These two behaviors independently describe the two 

extreme, limiting behaviors of particle motion in a fluid and their associated correlation 

functions have been used to relate the observed speckle contrast to the motion of the 

scattering particles.1-3   

 Khaksari and Kirkpatrick5 demonstrated a clear negative, linear relationship 

between both the v and [ ]c  components of advective flux and that LSCI was approximately 

equally sensitive to both terms.  Changes in particle concentration, [ ]c , manifest as changes 

in the scattering coefficient, sµ , of the fluid.  A key conclusion from this study was that 

changes in red blood cell concentration, that is, changes in hematocrit, which result in a 

change in the scattering coefficient of the blood, may appear as changes in velocity and 

vice versa.  However, a change in hematocrit also results in a change in the absorption 

coefficient, aµ , due to changes in the amount of hemoglobin present in the observation 
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volume.  The confounding effect of changes in absorption was not considered in Khaksari 

and Kirkpatrick.5 Changes in observed speckle contrast in LSCI due to changes in 

hematocrit8 or directly due to changes in sµ  and aµ  in phantom materials have been 

described by others in the literature,9 however a systematic study of the combined effects 

of absorption and scattering on the observed contrast values in LSCI has yet to be reported.   

 Hematocrit, that is, the percentage of red blood cells in whole blood typically ranges 

between 38.8% and 50% in men and 39.4% - 44.5% for women in the systemic 

circulation.10 However, even beyond these wide normal ranges, the hematocrit level of 

blood varies both naturally and under various pathological conditions.  There is regional 

difference in hematocrit levels.  For example, there is approximately a 3-fold variation in 

hematocrit between the capillary circulation and the systemic circulation.11 Age and certain 

diseases such as anemia, leukemia, diarrhea and colon cancer can also change hematocrit 

level. A different level of hematocrit reflects a difference in the number of red blood cells, 

which function as both absorbers and scatters in a LSCI. Our motivation to examine the 

effects of optical properties on contrast imaging arises from the fact that different levels of 

hematocrit may influence contrast via a change in optical properties. The practical 

question, then, reduces to how do differences in optical properties, due to changes in 

hematocrit, effect the calculated contrast in LSCI?   Furthermore, if LSCI is to be used to 

evaluate blood flow over a time course, or between individuals, does relative hematocrit 

that manifests as different sµ and aµ need to be considered in the interpretation of the 

results? 

 In the present work, we investigate how the optical properties of the scattering and 

absorption media influence speckle contrast imaging results. In order to examine this issue, 
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LSCI was performed on a series of flowing solutions with different reduced scattering and 

absorption coefficients. The hypothesis is that changing the volume fraction of scatterers 

and absorbers changes the reduced scattering coefficient and absorption coefficient 

resulting in a change in contrast. The goal of this study is to quantitatively examine the 

effects of optical properties on LSCI. 

 

2.  Materials and Methods  

2.1 LSCI system 

An LSCI system was designed and constructed specifically to examine the effects of the 

optical properties of the moving fluid on contrast values (Fig. 20).   The system was 

essentially identical to the one used in Khaksari and Kirkpatrick.5  A polarized 660nm 

diode laser (B&W Tek, Newark, DE, USA) was used to illuminate a section of glass tubing 

with outer diameter of 2mm and inner diameter of 1.5mm resting on top of a grooved 

plastic base. The illuminated region was approximately 20 mm in length.  The glass tube, 

which served as our imaging window, rested in the groove. The glass tube was attached to 

a segment of rubber tubing, which ran, from the fluid phantom reservoir and through a 

mini-peristaltic pump (Instech Laboratories, Plymouth Meeting, PA, USA, model P625) 

that controlled the flow velocity. The mini-peristaltic pump was controlled by an Arduino 

microcontroller. A MATLAB GUI controlled the imaging CCD camera (Point Grey, 

Dragonfly, Vancouver, BC, Canada) and the pump and also calculated and saved contrast 

images in near real-time. 

 
2.2 Liquid Phantoms 
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 We used and added-absorber method to generate our flow phantoms.  We initially 

created purely scattering phantoms in the same fashion as was done in Khaksari and 

Kirkpatrick5 by mixing calcium aluminum borosilicate glass microspheres (LUXSIL 

Cosmetic Microspheres, Potters Industries, Inc., Malvern, PA) with DI water.  The 

microspheres were polydisperse in terms of diameter, ranging between 9-13µm, which is 

close to the diameter of red blood cells. The microspheres had mass density of 1.1g/cc, 

which being close to that of water, minimized settling. Using a Mie calculator,12 the 

appropriate microsphere concentration was calculated using Mie theory to approximate the 

scattering coefficient of whole blood at various hematocrit levels.11  For these calculations, 

we assumed that the microspheres were pure scatterers and that 0aµ = .  Once the necessary 

concentrations of microspheres needed to create samples that approximate the scattering 

properties of whole blood were calculated, the flow phantoms were made by adding the 

calculated amount of microspheres to DI water. Ten solution phantoms of different 

scatterer concentrations were made using the results from the Mie calculations. Scattering 

coefficients of the fluid phantoms were confirmed via ballistic transmission measurements. 

A modified version of the Lambert-Beer law was used to calculate the scattering 

coefficient.  Equations 3 and 4 summarize the approach: 

      ;                                        (3) 

                                                         (4) 

where is the scattering coefficient,  is the absorption coefficient and z is the linear 

path length through the sample.  The samples were in contained in cuvettes with 1cm 
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internal width (z=1cm).  is the intensity of the ballistically transmitted beam when pure 

DI water was used as the sample in place of a scattering phantom. Since ( )I z  of the DI 

water and the scattering samples was measured in the same cuvette and the ratio between 

the intensities,
( )

o

I z
I

, the intensity loss due to the cuvette wall was eliminated from the 

calculations. 

 To calculate the reduced scattering coefficient, '
sµ , we assumed scattering 

anisotropy of, from the Mie calculations and  

(1 ) .s s gµ µ′ = −                                                             (5) 

Because the microsphere powder was polydispese in terms of diameter, ranging between 9 

– 13 µm, with a mean size of 11.7µm according to the manufacturer, but with an unknown 

size probability distribution, Mie calculations were performed assuming mono-dispersions 

of 9.0 µm, 11.7 µm, and 13.0 µm.  The scattering coefficients calculated via Mie theory 

were compared to the values generated via the ballistic transmission experiments in order 

to better characterize the scattering behavior of the fluid phantoms.   

 The effect of varying aµ on LSCI was also of interest in this study.  Thus, a series 

of absorbing liquid phantoms was constructed.   An ‘added-absorber’ approach was 

followed in making these phantoms.  Empirically determined volumes of India ink were 

added to the purely scattering phantoms and pure DI water.  Using ballistic transmission 

again, and with a priori knowledge of the scattering coefficient of the sample the absorption 

coefficient was estimated as:  
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                                                              (6) 

Equation (6) calculates the total attenuation coefficient (𝜇𝜇𝑡𝑡). By rearrangement, then,  

                                                              (7) 

Ultimately, an 11x11 matrix of phantom solutions with each element of the matrix having 

a unique combination of , , and therefore tµ  was developed.  The initial sample in 

this matrix was pure DI water ( 0)s a tµ µ µ= = =  and the last sample has the largest 

concentration of microspheres and India ink ( )maxs a tµ µ µ= = = . 

 

2.3 LSCI Measurements 

 Each fluid phantom was imaged with the LSCI system described above at a uniform 

velocity. Figure 21 displays the cross section of the sample preparation we used in the LSCI 

setup. As can be seen in the picture, the moving and static parts are in the same depth of 

field (flow is coming out of the page, towards the reader). 

 The camera lens (100mm macro zoom) was fixed at f/32, which resulted in 

relatively large speckles (see below) and an extended depth of field.  During the 

experiments, all experimental parameters were held constant with the exception of the 

optical properties of the moving fluid, which varied by sample. The flow velocity was held 

constant at 5mm/s.  The camera integration time was 6ms and held constant for all 

experiments.  Images were acquired at a frame rate of 125 frames/s. Thus, the only varying 

parameter was the optical properties of the fluid phantom used.  

 An important parameter in a LSCI experiment is the relative size of the speckles 

vs. camera pixel size.13 The minimum speckle size (in pixels), minσ , was determined by 
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calculating the power spectral density of the raw speckle images (Figs. 22a, 22b) and 

applying Eq. 8: 

 

min
Width of Array = 2  

Diameter of PSD Energy Band
σ

 
 
 

                                      (8) 

 

In LSCI, unlike other speckle techniques such as diffusing wave spectroscopy, the 

minimum speckle size should not match the camera pixel size, but must be greater than 2 

times of camera pixel pitch in order to meet the spatial Nyquist criteria.13 In these 

experiments, the minimum speckle size was set to 2.72 times the pixel size (10.7 µm). The 

minimum speckle size in the image plane was, therefore 29.1 m .µ≈  

 For image collection, the laser was set slightly off-axis to avoid specular reflection. 

A video of 100 frames was recorded with the CCD camera for each sample. The experiment 

was repeated 3 times for each sample. In the end, 300 frames of raw speckle and 300 

contrast images were recorded for each sample. The 300 frames were then averaged to 

create an ‘average’ contrast image.  The ratio between the dynamic (fluid) region and the 

static region ( ) of the contrast images was calculated for all of the images. Similar to 

above, an 11x11 matrix was created of  values. This matrix demonstrated the change 

in contrast that resulted from the change in the optical properties of the fluid phantoms. 

The numerical values of  lay between 0 and 1.0, since the contrast is always lower in 

the fluid (dynamic) region of the contrast image: 

.fluid
ratio

static

KK K=                                                    (9) 
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3.  RESULTS 

3.1 Phantom Characterization 

 The scattering coefficient for 10 different sample concentrations of microspheres 

(plus pure DI water) was measured and by assuming 0.9g = , the reduced scattering 

coefficient of the samples was estimated.  By increasing the number of scatterers, the 

reduced scattering coefficient increased in a linear fashion. Figure (23) shows the 

phantom’s reduced scattering coefficients and the relationship between the concentration 

of scatterers and the reduced scattering coefficient.  Because the microspheres were 

polydisperse with an unknown size distribution, Fig. 23 also displays the results of Mie 

scattering simulations for the minimum, maximum, and means size of the spheres as 

reported by the manufacturer.  It is seen that the polydisperse mixtures displayed overall 

scattering behavior similar to that of a monodisperse system of ~10.5µm spheres.  

Microsphere concentration [ ]c  ranged from 9.2e-3mg/ml (1e-5 spheres/µm3) to 9.2e-2 

mg/ml (1e-4 spheres/µm3) and the reduced scattering coefficient of the samples ranged 

from 0.48 mm-1 to 4.84 mm-1.  A linear regression through the experimental data yielded 

the following relationship: 

[ ]' 248.66 0.196 ( 0.977).s c rµ = − =                                              (10) 

 By adding measured amounts of India ink to the sample with the highest 

concentration of microspheres ( ' 14.8mmsµ
−= ), we determined the absorption coefficient at 

10 different India ink concentrations via ballistic transmission measurements of tµ and 

using Eq. 7.  Absorption coefficient values of the phantoms used in our study ranged from 
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5.1 3 6.73 2ae eµ− ≤ ≤ −  mm-1.  Figure (24) shows the linear relationship between India 

ink concentration and the measured absorption coefficient

[ ]( )2367.3 ink 0.0016; 0.996a rµ = + = .   

 

3.2 Contrast Imaging 

 The main goal of this investigation was to examine the combined effects of 

scattering and absorption on the contrast in LSCI images. As discussed above, the 

experiments were run for the 121 phantoms with unique combinations of reduced scattering 

and absorption coefficients. Accordingly, within the matrix, the absorption coefficient 

changed when moving along the rows and the reduced scattering coefficient changed 

moving along the columns. Values of  were obtained from this matrix, and the 

contrast ratios for the different combinations of optical properties were plotted. 

 Figure (25) shows an example LSCI images from the 11x11  matrix.  The 

tubing that contained fluid phantom flowed runs from the upper left to lower right and the 

resulting, low-contrast area is readily observed in the images. The triangular regions in the 

upper right and lower left were the ‘static’ plastic block.   

 The relationship between  and '
sµ  was found to be linear.  An increase the 

concentration of scatterers [ ]c which manifested as an increase in '
sµ resulted in a decrease 

in ratioK .5 The results are plotted in Fig. (26) where ratioK  is plotted as a function of '
sµ  for 

11 different values of aµ .  All the linear fits were statistically significant (t-test, p<0.05) 

and the slopes, ms, of the best fit lines ranged between ' '0.072 0.05ratio ratio
s

s s

K Km
µ µ

∆ ∆
− ≤ ≤ −

∆ ∆
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and there was no significant difference between the slopes (t-test, p < 0.05).  The mean 

slope was '5.53 2 .ratio

s

Ke
µ

∆
− −

∆
 Figure (27) plots the y-intercepts ( )' 0sµ =  of the regression 

lines shown in Fig. (26) as a function of absorption coefficient, aµ .  This plot reveals a 

linear reduction in ratioK  with an increase in aµ  in our experiments 

( )2
0

5.68 0.94 ; 0.982
s

aratio
K r

µ
µ′=

= − + = −  .   

 As will be discussed below, this reduction in contrast is due to the attenuation of 

the light reaching the static scattering block below the moving fluid and thus, reducing the 

influence of these static scatterers on the overall contrast.  Others8,9 have observed an 

increase in contrast with an increase in absorption, however, in their experiments, there 

was no underlying layer of static scatterers and their scattering mediums were optically 

semi-infinite, or close to it.   

 Thus, with an increase in absorption coefficient, ratioK  decreased.  This trend is 

shown for the fluid phantoms with 11 different reduced scattering coefficients in Fig. (28). 

All the linear fits were statistically significant (t-test, p < 0.05) and the slopes, ma, of the 

best fit lines ranged between 3.52 4.55ratio ratio
a

a a

K Km
µ µ

∆ ∆
− ≤ ≤ −

∆ ∆
 and there was no 

significant difference between the slopes (t-test, p < 0.05).  The mean slope was 

4.01 ratio

a

K
µ

∆
−

∆
 .  Figure (29) plots the y-intercepts of these regression lines as a function of 

the corresponding reduced scattering coefficients.  This plot reveals a linear reduction in 
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ratioK  with an increase in '
sµ  in our experiments 

( )2
0 ( 7.02 2) 0.92 ; 0.976

a sratioK e rµ µ=
′= − − + = −  .  

 By combining the scattering and absorption data, the influence of total attenuation 

coefficient, '
t s aµ µ µ= + on ratioK  was assessed.  As expected from the results presented 

above, there was a linear decrease in ratioK  with an increase in tµ .  Figure (30) displays the 

results of the ratio tK vs µ  for the samples that were along the major axis of the scattering – 

absorption phantom matrix. The equation describing the least-square fit was 

20.14 0.93; 0.94ratio tK rµ= − + = −   .  The slope is statistically significant (t-test, p < 0.05).     

 

 

4.  Conclusions 

 We have demonstrated a linear decrease in speckle contrast, ratioK  , with an 

increase in reduced scattering coefficient.  This decrease in contrast with an increase in '
sµ  

was independent of absorption as quantified by the absorption coefficient, aµ  .  It is 

important to note that the parameter of real interest is not the scattering coefficient, per se, 

but the concentration of scatterers, [ ]c , in the imaging volume.  A change in [ ]c  manifests 

as a linear change in '
sµ .5   

 Likewise, in this study, contrast decreased linearly as absorption increased.  

Others8,9 have reported an increase in contrast as absorption increases.  At initial glance, it 

may appear that these results are contradictory.  However, that is not the case and indeed, 

the results presented here are entirely consistent with what has been reported in the 
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literature previously.  The effect of increasing absorption is to decrease the number of 

(deep) scattering events. In previous publications, the fluid phantoms were relatively deep 

and the entire imaging volume was populated by dynamic scatterers.  Thus, by adding 

absorber, the number of dynamic scattering events was reduced, resulting in an increase in 

contrast.  In the present situation, the addition of absorbers accomplished the same thing.  

That is a decrease in the number of deep scattering events.  However, in our case, the deep 

scatterers were static, coming from the fixed plastic block underneath the glass tube that 

served as our imaging window.  Thus, the absorbers decreased the number of static 

scattering events and thereby the influence of these static scattering events was reduced, 

resulting in decreased contrast values.  

 Recently, Kazmi et al.8 focusing entirely on scattering concluded that LSCI is 

sensitive to the product of speed and a dimensional term that is proportional to vessel 

diameter.  In the Introduction to this paper, and in our prior work,5 it was argued that LSCI 

is sensitive to advective flux.  These two conclusions are, again, entirely consistent with 

each other.  Recall from above that advective flux, GJ  is the second term on the RHS of 

the diffusion with drift equation.  Rewriting Eq. (2),5  

[ ] [ ] ,KK x
cJ D v c
x

∂
= − +

∂
  

and    

 [ ] .G xJ v c=
                                                                (12) 

Thus, Khaksari and Kirkpatrick5 concluded that LSCI is sensitive to the product of velocity 

(assuming direction is known) and scatterer concentration. Note that advective flux as 
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defined by Eq. (12) is related to the total mass flux m across a plane perpendicular to the 

direction of flow via Eq. (13): 

,KKm J S=                                                                        (13) 

where S is the internal cross-sectional area of  the tube or vessel containing the flow, KKJ  

is the total flux,  and the dot over the variable explicitly indicates the time derivative. It 

assumed that diffusional flux = 0 and G KKJ J= .  To be consistent with the conclusions of 

Kazmi et al.,8 Eq. 13 can be re-written in terms of diameter: 

 2 ,
4KKm J dπ =  

 
                                                            (14) 

where d is the diameter of the vessel.  By substitution, then 

 [ ] 2 .
4xm v c dπ =  

 


                                                          (15) 

Thus total mass flux is given by Eq. (15), assuming that diffusional flux = 0.  In the case 

where diffusional flux does not equal 0.0 (likely in most practical LSCI applications), then 

the total mass flux is given by  

 [ ] [ ] 2 .
4T x

c
m D v c d

x
δ π
δ

  = − +  
  


                                                (16)  

Equations (15) and (16), then, shows the consistency between the present results, the results 

of Khaksari and Kirkpatrick5 and the results of Kazmi et al.8  That is, in terms of mass flux, 

LSCI is sensitive to the product of velocity (or speed if direction is not known explicitly), 

particle concentration, and a factor that is proportional to diameter squared. 

 The present paper is certainly not the first paper to demonstrate that speckle contrast 

changes as a function of the amount of scattering or absorption present,5,8,9  however, this 
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is the first systematic study that systematically evaluated the combined effects of scattering 

and absorption on contrast values.  Furthermore, the present paper demonstrates that by 

viewing LSCI in terms of mass transport, consistency between earlier studies and the 

present one can be achieved.  Specifically, we demonstrate that both scattering and 

absorption have linear effects on contrast values.  Contrast values decrease linearly with 

an increase in scattering, regardless of absorption.  An increase in absorption serves to 

reduce the number of deep scattering events observed.  Thus, depending if the ‘deep’ 

scatterers are dynamic or static, contrast values can either increase or decrease with 

increased absorption. 
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Figures: 

 

Figure 20.  Diagram of the LSCI and flow systems. 
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Figure 21.  Sample cross-section. 

 

Figure 22a.  A laser speckle pattern. 
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Figure 22b.  Power spectral density of the speckle pattern shown in Fig. (21a). The 

diameter of the bright central region is inversely proportional to the minimum speckle 

size in the speckle pattern. 

 



www.manaraa.com

95 

Figure 23.   Mie calculations predicting the reduced scattering coefficient for glass 

spherical particles of 9.0 µm, 10.5 µm, 11.7 µm, and 13.0 µm diameters (dashed lines, 

red dashed lines on-line).  Reduced scattering coefficient as determined by ballistic 

transmission data points is shown for the fluid phantoms (dots) along with the best-fit line 

in a least squares sense.  The polydisperse microsphere phantoms behaved approximately 

as a monodisperse system made of 10.5 µm glass microspheres.  

[ ]( )' 248.66 0.196; 0.98s c rµ = − = . 

 

Figure 24.  Plot of the absorption coefficient of the fluid phantoms as a function of India 

ink concentration.  [ ]( )2367.3 ink .0016; 0.996a rµ = + = . 
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Figure 25.  A representative LSCI image.  The fluid motion was in the low contrast 

region flowing from upper left to lower right of the image.  The surrounding higher 

contrast triangular areas are the static plastic block. 
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Figure 26.  Plot of ratioK  vs. '
sµ  at 10 different values of aµ  .  All slopes were 

statistically significant (t-test, p <0.05) and there was no statistically significant 

difference between the slopes (t-test, p <0.05).  The mean slope was '5.53 2 .ratio

s

Ke
µ

∆
− −

∆
 

 

Figure 27.  Plot of the y-intercepts ( )' 0sµ =  of Fig. (7) as a function of respective 

absorption coefficients.  An increase in absorption resulted in a linear decrease in ratioK  

in these experiments due to reducing the influence of the underlying static scatterers.  

( )2
0

5.68 0.94 ; 0.982
s

aratio
K r

µ
µ′=

= − + = − . 



www.manaraa.com

98 

 
Figure 28.  Plot of ratioK  vs. aµ  at 10 different values of '

sµ  .  All slopes were 
statistically significant (t-test, p <0.05) and there was no statistically significant 

difference between the slopes (t-test, p <0.05).  The mean slope 4.01 ratio

a

K
µ

∆
−

∆
. 

 
Figure 29.  Plot of the y-intercepts ( )0aµ =  of Fig. (7) as a function of respective 

reduced scattering coefficients.  An increase in scattering resulted in a linear decrease in

ratioK . ( )2
0 ( 7.02 2) 0.92 ; 0.976

a sratioK e rµ µ=
′= − − + = − . 
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Figure 30.  Plot of ratioK  vs. tµ   for the phantom samples that were along the major axis 

of the scattering and absorption phantom matrix.  An increase in tµ  resulted in a 

significant decrease in ratioK  . ( )20.14 0.93; 0.94ratio tK rµ= − + = −  . 
  



www.manaraa.com

100 

 
Chapter 5 

(Paper 2) 

Laser Speckle Contrast Imaging is Sensitive to Advective Flux 

Density1 

 

Contribution of Authors: 

Sean J. Kirkpatrick: Principal Investigator, data evaluation, writing and edition 

Kosar Khaksari: Ran the experiments; Developed theory, Wrote computer code, Analyzed 

data, Wrote manuscript 

 

Kosar Khaksari and Sean J. Kirkpatrick* 

*Corresponding Author: E-mail: sjkirkpa@mtu.edu 

 

Michigan Technological University, Department of Biomedical Engineering, 1400 

Townsend Dr., Houghton, MI, 49931 USA  

Keywords:  laser speckle contrast imaging, flowmetery, mass transport, flux, advective 

flux density, diffusive flux, particle concentration, velocity, scattering coefficient 

  

                                                        
1 The material contained in this chapter was previously published in the Journal of Biomedical 
Optics. 



www.manaraa.com

101 

Abstract.  Unlike laser Doppler flowmetry, there has yet to be presented a clear description 

of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to.  Herein, 

we present a theoretical basis for demonstrating that LSCI is sensitive to total flux, and in 

particular the summation of diffusive flux and advective flux density.  We view LSCI from 

the perspective of mass transport and briefly derive the diffusion with drift equation in 

terms of an LSCI experiment.  This equation reveals the relative sensitivity of LSCI to both 

diffusive flux and advective flux, and thereby to both concentration and the ordered 

velocity of the scattering particles.  We demonstrate this dependence through a short series 

of flow experiments that yield relationships between the calculated speckle contrast and 

the concentration of the scatterers (manifesting as changes in scattering coefficient), 

between speckle contrast and the velocity of the scattering fluid, and ultimately between 

speckle contrast and advective flux.  Finally, we argue that the diffusion with drift equation 

can be used to support both Lorentzian and Gaussian correlation models that relate 

observed contrast to the movement of the scattering particles and that a weighted linear 

combination of these two models is likely the most appropriate model for relating speckle 

contrast to particle motion. 
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1.  Introduction 

 Laser speckle contrast imaging (LSCI) is a non-invasive (or minimally invasive) 

imaging modality used primarily for the relative and qualitative imaging of blood flow and 

perfusion.1-3 This method has a wide field of view and it is efficient and simple for full-

field monitoring. The simplicity of LSCI along with its high spatial and temporal resolution 

allows it to be used as a powerful tool to measure, monitor and investigate living processes 

in near real-time. The fundamental concept behind this method is the quantification of the 

relationship between moving particles (scatterers) in the object space (i.e, the living organ 

or blood vessel) and the moving speckles in the image plane. When there is motion in the 

object space, the intensity of speckles in the image space fluctuates in time. It is these time-

varying speckles in the image space that encode the motion in the scattering object. In time 

varying, or dynamic, speckle patterns the speckle is blurred during the finite camera 

integration time and the spatial variation, or contrast, in intensity is thereby decreased.  

 A clear relationship between LSCI and laser Doppler flowmetry has been 

established in the literature.4  Furthermore, a clear relationship between laser Doppler 

flowmetry and both the concentration of scattering particles and the velocity of the particle-

containing fluid has been established.4  As noted by Boas and Dunn,2 the theoretical basis 

of LSCI seems to imply that LSCI is sensitive to variations in speed, yet several authors 

have observed that LSCI is sensitive to particle concentration as well.2,5  This implies that 

LSCI is truly a measure of flux.  However, a clear demonstration of this has yet to be 

presented.  That is the purpose of this manuscript.   
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Blood perfusion, flow, speed, velocity and flux 

 In order to more clearly understand exactly what LSCI is sensitive to, it is important 

to have clear definitions of the various terms used in the literature to describe the movement 

of blood.  Many of these terms have been used interchangeably in the LSCI literature, even 

though these terms possess different units and physical dimensions.2,3 

 Clinical units for blood perfusion are typically milliliters (of blood) per milliliters 

(of tissue) per second (ml/ml/s) and is a measure of blood volume flow through a given 

volume or mass of tissue.  Blood perfusion clearly indicates a rate, 
( )/

,b t
b

V V
s

φ = where 

bV is the volume of whole blood, tV is the volume of tissue, and s is seconds.  Alternatively, 

blood perfusion may be reported in units of ml/100mg/min.  Either way, clinical blood 

perfusion is a measure of capillary and interstitial blood flow and is meant as a means of 

quantifying the delivery of oxygen and nutrients to the tissue as well as the removal rate of 

metabolic waste from the tissue by the blood.  Regardless of units, blood perfusion has 

physical dimensions of [quantity] 1T −  (because 3M L∝ ).  It should be noted that bV refers 

to the volume of whole blood, not just the components of blood that scatter light. The units 

of blood perfusion imply a concentration rate. 

 The term flow is usually expressed in terms of volume per time, for example, ml/s, 

and has physical dimensions of 3 /L T .  The frequency shift observed in laser Doppler 

flowmetry of blood has been convincingly demonstrated to be sensitive to bulk blood flow 

and to particle density.4  Flow, when discussing the movement of a fluid with suspended 

particles, such as blood, is often thought of as the number of particles per volume per time,2 

or a concentration rate, [𝑐𝑐]̇ , where the dot explicitly indicates the time derivative and [ ]c is 
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the number concentration, [ ] ,p

b

n
c

V
= where pn is the number of particles. In this case, flow 

is more properly referred to as flux density (below). 

 Speed and velocity are often used interchangeably, although they are two very 

different quantities.3  Speed is a scalar quantity with units of distance per time (e.g., ms-1), 

while velocity is a vector quantity with the same units.  The magnitude of the velocity 

vector is speed.  Both speed and velocity have physical dimensions of 1LT − . 

 Flux is a term used to describe transport phenomena.  That is the flow of some 

physical property (mass, energy, momentum, etc.) in space.  It is typically thought of as a 

rate of flow of a physical property per unit area.  Flux has the physical dimensions of  

[quantity] 1 2T L− − .  Of particular relevance to LSCI is the diffusive flux (the rate of 

movement of particles across a unit area (e.g., mol m−2·s−1) which describes Fick’s first 

law of diffusion and advective flux ([particles] m-2 s-1) where the square brackets indicate 

the number concentration.6 

 

Relationship to laser Doppler flowmetry 

In addressing the issue of what LSCI is sensitive to, the usual approach is to observe that 

LSCI and laser Doppler flowmetry (LDF) essentially measure the same quantity, although 

through very different means.3 Goodman7 established a relationship between the speckle 

contrast, sK
I
σ

= , and the autocovariance of the intensity fluctuations, ( )tC τ , of an 

individual speckle:3 

( ) ( )2 2

0

1 ,
T

s tK T C d
T

σ τ τ∝ = ∫                                                (1) 
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where T  is the detector integration time, τ is the characteristic correlation time, and 2σ is 

the speckle intensity variance over time T.   The autocovariance of the intensity 

fluctuations, ( )tC τ  was assumed to follow a Lorentzian distribution, although this 

assumption is not a necessity for Eq. (1) to hold.  By assuming a Lorentzian line shape for

( )tC τ , it is implicit that the underlying particle motions giving rise to the intensity 

fluctuations is random (Brownian for larger particles).  If ordered motion is assumed, then 

( )tC τ follows a Gaussian line shape.8  Laser Doppler flowmetry directly evaluates the 

integrand on the right hand side of Eq. (1), while LSCI indirectly assesses the left hand 

side of the equation.3 

 Bonner and Nossal4 clearly demonstrated a quantitative relationship between the 

mean Doppler shift, ω , particle density and velocity of the fluid in a moving fluid.  That 

is, a dependence of ω on particle flux.  Yet, such a clear demonstration has not yet been 

provided for LSCI.  The remainder of this manuscript considers LSCI from the perspective 

of mass transport and aims to demonstrate a theoretical and experimental dependence of 

LSCI on particle flux.   

 

2.  Theory 

Diffusion with Drift Equations 

 We begin by viewing the problem in terms of a 3-dimensional mass-transport 

problem governed by the convection-diffusion equations.6 In the most general 3-D form, 

the convection-diffusion equation is frequently given as 
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𝜕𝜕[𝑐𝑐]
𝜕𝜕𝜕𝜕

= 𝑅𝑅 + ∇ ∙ (𝐷𝐷∇[𝑐𝑐]) − ∇ ∙ (𝑣⃗𝑣[𝑐𝑐])                                                   (2) 

where [ ]c is the concentration of scatterers (e.g., red blood cells), D is the mass diffusivity 

for the scattering particle motion and is simply diffusion coefficient of the scatterers, R is 

a factor that accounts for a change in the number of scatterers due to creation or destruction 

(also referred to as a “source” or “sink” of [ ]c ), and v is the average velocity of the moving 

scatterers which in our case we will assume is the average blood flow velocity (ms-1).  As 

usual, ∇ ∙ represents the divergence and ∇ is the gradient in the dimensions [x,y,z]. 

 Several simplifying assumptions can be made for our situation.6 We assume a 

steady-state situation such that 
[ ] 0
c
t

∂
=

∂
.  That is, the concentration of scatterers remains 

constant over the imaging time.  Secondly, we assume that the overall number of scatterers 

remains constant in our imaging volume over the imaging time.  That is 0R = .  Given these 

assumptions, then, Eq. (2) becomes the stationary convection-diffusion equation 

0 = ∇ ∙ (𝐷𝐷∇[𝑐𝑐]) − ∇ ∙ (𝑣⃗𝑣[𝑐𝑐])                                                           (3) 

The first term on the right hand side (RHS) of the equation, ∇ ∙ (𝐷𝐷∇[𝑐𝑐]) describes the flux 

LJ due to random motion of the scatterers and in mass-transport theory is usually attributed 

to diffusion.  The local motion of the scatterers is random and in spectroscopic or laser 

physics terminology is described by a Lorentzian spectral line shape.8 Employing an 

analogy from laser physics, all of the scatterers in the imaging volume will have identical 

behaviors. In laser physics, this results in the phenomenon of homogeneous line broadening 

and is one of the two possible limiting behaviors of moving particles.  The second term on 

the RHS of the equation ∇ ∙ (𝑣⃗𝑣[𝑐𝑐]) describes the flux GJ due to both the concentration of 
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the scatterers and the velocity of the fluid (blood serum).  This term is referred to as 

advective flux density. Advection is defined here as the transport mechanism by which the 

scatterers (e.g., red blood cells) are transported due to the bulk motion of the fluid, the 

blood serum.  The advection operator in Cartesian coordinates can be given by6  

∇ ∙ 𝐯𝐯 = 𝑣⃗𝑣𝑥𝑥
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣𝑦𝑦
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣𝑧𝑧
𝜕𝜕
𝜕𝜕𝜕𝜕

     ,                                                 (4) 

 where v is a velocity field.  If the flow is assumed to be incompressible then v is solenoidal 

(i.e., ∇ ∙ 𝐯𝐯 = 0)   and the advection equation may be written as  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ∙ ∇𝜑𝜑 = 0                                                                    (5) 

where ϕ is a scalar field that describes the location of the scattering particles.  If the flow 

of the blood serum is steady then 𝐯𝐯 ∙ ∇𝜑𝜑 = 0, ϕ is steady along a streamline and the flow 

is organized.  As above, in the terminology of laser physics, this can be viewed as an 

inhomogeneous line broadening phenomenon and the dynamic behavior is particular to 

individual scatterers.  The line shape for the population of scatterers in this case is 

Gaussian8 and represents the other possible limiting behavior (as opposed to the Lorentzian 

description, above).   

 Thus, Eq. (3) describes ordered and unordered flow, along with both the diffusion 

dependent and velocity dependent components of the total flux .KK L GJ J J= +   In the case 

where the motion is entirely due to random motion (Brownian), then 0 .GJ = In the other 

limiting case where the motion is purely organized flow, 0 .LJ = Of course, these two 

limiting situation are rare, and in most cases of practical interests, there will be components 

of both types of motion.  
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 For the sake of thoroughness, it is worth noting that the average velocity v is in 

some fashion proportional to the applied pressure (i.e., the blood pressure).  In this case, 

we can write the stationary drift-diffusion equation:6 

0 = ∇ ∙ (𝐷𝐷∇[𝑐𝑐]) − ∇ ∙ �𝐹𝐹𝐹𝐹
��

𝜉𝜉
�         ,                                                    (6) 

where F


is the applied force and ξ describes the viscous drag on the particles (e.g., the red 

blood cells).   

 In the case of perfusion imaging using LSCI, the dimensionality of the problem can 

be reduced to 2 dimensions, x and y (assuming the optical imaging axis is in the z direction).  

The situation becomes planar when one realizes that LSCI is a coherent imaging technique 

and that the light scattered from all scatterers within the depth of field (DOF) of the imaging 

lens will coherently sum in the imaging plane to create a single speckle pattern.  The 

underlying assumption is that the temporal coherence length of the laser, DOF .c ≥  In the 

planar assumption, the convection-diffusion equation (Eq. (3)), then, is recognized as 

Fick’s first equation with drift:9 

[ ] [ ]

[ ] [ ] .

x x

y y

cJ D v c
x
cJ D v c
y

∂
= − +

∂
∂

= − +
∂




                                                                  (7) 

Equation (7) describes the situation in which all of the scatterers translate in the 

(or )x y+ +  direction at a velocity v .  Thus the flux at any point x  increases by amount 

[ ]( )xv c x  (and similarly for any point y).   
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Equation (7) may also be written in a form that incorporates the applied force F


, such as 

blood pressure, that is responsible for the ‘drift’ (i.e., the second term on the RHS of Eq. 

(7)).  In this case, Eq. (7) becomes  

[ ] [ ]

[ ] [ ] .

x
x

y
y

FcJ D c
x

FcJ D c
y

ξ

ξ

∂
= − +

∂

∂
= − +

∂



                                                                (8) 

 In many LSCI applications where the motion along a vessel is of interest, Eq. (7) 

can be further reduced in dimensionality to a 1-D problem.  As with the discussion of Eq. 

(3), Eq. (7) describes ordered and unordered flow, along with both the diffusion dependent 

(first term on the RHS) and velocity dependent (2nd term on the RHS) components of the 

total flux.   

 We now focus on a situation in which the movement of scattering particles is 

entirely random (Brownian motion).  Such a situation may be envisioned when using LSCI 

to image a semi-infinite medium with scattering particles (e.g., microspheres) in random 

motion.  Thus, 

[ ] .KK
cJ
x

∂
∝

∂
                                                                          (9) 

Therefore, in this implementation, LSCI is sensitive to diffusional flux resulting from a 

concentration gradient or from the Brownian motion of particles. 

 In the case of primarily ordered flow (i.e., steady flow in a vessel or tube) it is seen 

that    

[ ] .KKJ v c≅
                                                                     (10) 
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Equation (10) describes the condition in which the total flux is due entirely to advective 

flux density. Advective flux density is flux that is dependent upon both velocity v and 

concentration of scattering particles [ ] .c 6 Thus in this implementation, LSCI is sensitive 

to flux resulting from both velocity and concentration of scatterers. An increase in either 

velocity or concentration will result in an increase in the number of dynamic scattering 

events during a given time interval (camera integration time, T), resulting in a decrease in 

contrast, K.   

 To relate this discussion to our assertion at the top of this section that our problem 

is one of mass transport, we note that advective flux density as defined by Eq. (10) is related 

to the total mass flux m across a plane perpendicular to the direction of flow via Eq. (11): 

,KKm J S=                                                                        (11) 

where S is the internal cross-sectional area of  the tube or vessel containing the flow and 

the dot over the variable explicitly indicates the time derivative. 

 

Relationship of the Diffusion with Drift Equation to Contrast:  Random motion and the 

Lorentzian cumulative distribution function 

 Consider the one-dimensional case:9 

[ ] [ ] .KK x
cJ D v c
x

∂
= − +

∂
                                                              (12) 

From Eq. (12), it is seen that the total flux, KKJ , is dependent upon the concentration 

(gradient) of scatterers, [ ]c , and the velocity, v , of the surrounding fluid that is causing a 
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lateral translation of the scatterers.  Note that changes in [ ]c manifest as changes in the 

scattering coefficient, sµ , of the fluid solution under observation. 

 The first term on the RHS of Eq. (12) is recognized as Fick’s first law of diffusion.9  

Particle motion described by this term is random (Brownian).  Fercher and Briers1 invoked 

this assumption about the particle motion in their initial description LSCI.  Under this 

assumption, then, a relationship between speckle contrast, K , (in the imaging plane) and 

the exponential (de)correlation function associated with Brownian motion has been 

developed by several authors2,3 and serves as one possible limiting behavior:8 

( ) ( )
1
2

2 /2 1 ,
2

cTc cK r e
T T

ττ τ −  = − −    
                                                (13) 

where cτ is the characteristic decorrelation time of the observed speckle pattern in the 

imaging plane and T is the camera integration time.  It is important to note that Eq. (13) is 

actually the cumulative distribution function of a Lorentzian probability distribution 

function.8 

 

Ordered flow and the Gaussian cumulative distribution function 

 Equation (13) is technically only correct for purely random particle motion 

described by the first term on the RHS of Eq. (13).  This term, [ ]cD
x

∂
−

∂
, describes the 

diffusional flux, LJ , component of KKJ .  In this motion, the individual behaviors of the 

particles are representative of the population as a whole. 
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 The second term on the RHS of Eq. (13) describes the advective flux density, GJ , 

component of  KKJ  .  This term, [ ]v c , describes ordered motion of the particles and the 

dynamic behavior of the individual particles is unique to the individual scatterers.  That is, 

the behavior of individual particles is not representative of the behavior of the population.  

This behavior forms the other possible limiting behavior of dynamic particles.  As above, 

several authors have presented a relationship between the observed speckle contrast and 

the Gaussian correlation function associated with ordered motion:2,3 

( ) ( )( )2

1
2

2 /22 erf 1 .
2

cTc c

c

TK r e
T T

ττ τπ
τ

−
    = − −         

                             (14) 

Again, it is worth noting that Eq. (14) is in actuality a cumulative distribution function of 

a Gaussian probability distribution function.  Also worth noting is that Eq. (14) is 

technically only accurate for purely ordered flow.8   

 

Combination of ordered and un-ordered flow 

 It is becoming clear, then, that LSCI is sensitive to flux, J.  The previous two 

sections have discussed the two contributions to KKJ , diffusional flux, LJ , and advective 

flux density, GJ .  In most practical situations involving LSC imaging, it is most likely that 

both forms of motion are present in some proportion and the actual behavior is a mixture 

of these two statistically independent processes.  In this case, the model relating K to the 

characteristic correlation behavior of the scatterers would be a convolution of the two 

previous models.  Note that by the convolution theorem,8 the net correlation function for 

the combined behavior is simply the product of the exponential correlation behavior 
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associated with random motion and the Gaussian correlation behavior associated with 

ordered motion.  Such a model is referred to as a Voigt model.8  This model has been 

discussed by Duncan and Kirkpatrick8 and has been shown to have physical relevance with 

regards to relating speckle correlation times to scatterer velocity in the object plane. 

 Thus, depending upon the implementation of LSCI, LSCI is sensitive to diffusional 

flux (Eq. (9)), advective flux density (eq. (10)), or some combination of the two (Eq. (12).   

In most practical scenarios of interest LSCI depends upon both velocity and concentration.   

 

3.  MATERIALS AND METHODS  

 A small flow system, an LSCI system, and a series of fluid phantoms with known 

optical properties were developed so as to examine the effects of velocity, v , and scatterer 

concentration, [ ]c .  Because the direction of the flow was known a priori, velocity, not 

speed was evaluated.   A polarized 660nm diode laser (B&W Tek, Newark, DE, USA) 

illuminated a piece of glass tubing with outer diameter of 2mm and inner diameter of 1.5 

mm on top of a grooved plastic base. The illuminated region was approximately 20 mm in 

length. The glass tube, which served as our imaging window, rested in the groove. Thus, 

there was a layer of static scatterers below the flow tube and along both sides. The static 

scattering regions adjacent to the flow tube served as reference regions to normalize the 

contrast values from the flow region (see below).  A section of rubber tubing was attached 

to the glass tubing that connected the tubing system to a mini peristaltic pump (Instech 

Laboratories, Plymouth Meeting, PA, USA, model P625). The fluid phantom material 

flowed into the tubing using this mini peristaltic pump, which was controlled by an Arduino 
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microcontroller. A MATLAB GUI controlled the CCD camera (Point Grey, Dragonfly, 

Vancouver, BC, Canada) and the pump, and also calculated and saved contrast images in 

near real-time (Fig. 31). 

 

 

Figure 31.  Diagram of the LSCI and flow systems. 

  

 Scattering flow phantoms were made by mixing aluminum borosilicate glass 

microspheres (Luxil Cosmetic Microspheres, Potters Industries, Inc., Malvern, PA) with 

DI water. The microspheres were poly-disperse in terms of size and the diameters 

nominally ranged between 9-13 microns with a mean diameter of 11.7 microns according 

to the manufacturer. The number distribution of the sizes was not known to us.  The 

microspheres had a mass density of 1.1g/cc. Using Mie theory, we calculated the 

appropriate concentrations to create scattering solutions with reduced scattering 
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coefficients, '
sµ , that approximated that of whole blood with various hematocrit levels.10  

Once the solutions were mixed, ballistic transmission measurements were used to verify 

the scattering coefficient, sµ  and ultimately, '
sµ . 

 A modified version of the Lambert-Beer law was used to calculate the scattering 

coefficient from the ballistic transmission data.  Since only scatterers were added to the DI 

water, we assumed that the scattering coefficient was much greater than the absorption 

coefficient, aµ , and that 0aµ = . Thus: 

      ;                                        (15) 

                                                         (16)    

where z is the thickness of the samples (1.0 cm),  was the measured intensity of the 

ballistically transmitted beam when pure DI water was used as the sample. Since the 

ballistic intensity of the DI water and the scattering samples was measured in the same 

cuvette and the ratio between the intensities,
( )

o

I z
I

, the intensity loss due to the cuvette wall 

was eliminated from the calculations. 

 Assuming scattering anisotropy 0.9g = based on the Mie calculations, '
sµ was 

calculated for the phantoms as  

' (1 ) .s s gµ µ= −                                                          (17) 

In this fashion, 10 liquid phantom samples were made.  The number concentration, [ ]c , of 

microspheres ranged from 1e-5 to 1e-4  microspheres/µm3 and the reduced scattering 
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coefficients of the samples ranged from 0.48 to 4.84 mm-1.  Pure DI water was also used 

as a flow sample. 

 Each fluid phantom was run through the LSCI system described above. The image 

below (Fig. 32) shows the cross section of the sample preparation we used in the LSCI 

setup. As can be seen in the picture, both  moving and static scatterers were in the within 

the depth of field of the imaging lens and thus the light scattering from these different 

regions summed coherently into a single speckle pattern.  In this figure, the flow is coming 

out of the page, towards the reader.   

 

Figure 32.  Sample cross-section 

 

 The laser was set slightly off-axis to avoid specular reflection. A video of 100 

frames was recorded with a CCD camera for each sample at 125 frames per second. The 

custom MATLAB GUI saved all 100 frames of the raw speckle patterns, generated contrast 

images using a sliding 7x7 pixel window,11 and finally saved the resulting contrast images. 
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The experiment was repeated 3 times for each sample.  In order to more generalize the 

results, we reported a value of ,flow
ratio

static

K
K

K
= where flowK is the contrast calculated from 

the 7 x 7 pixel window cropped from the flow region of the speckle images and staticK is an 

identically sized window from the surrounding static region.  Reporting ratioK as opposed 

to just reporting values of K reduced the undesirable influences of ambient light and 

fluctuations in incident laser intensity on the sample, as well as reduces the influence of 

the scattering properties of the background static block on the results.    

 During the experiments to examine the sensitivity of LSCI to changes in [ ]c , all of 

the experimental variables were held constant with the exception of '
sµ , which varied by 

sample. The velocity, 5.0 mm/sv =
 , the outer diameter of the glasstubing was 3mm and 

the inner diameter was 2mm. The camera integration time, T, was 6ms. The camera lens 

(55 mm telecentric lens) was fixed at f/32, which resulted in relatively large speckles and 

an extended depth of field.  The minimum speckle size on the CCD chip in the camera was 

~ 3x the pixel pitch as determined by examining the power spectrum of a speckle image.  

ratioK values were calculated as above and plotted as a function of particle concentration. 

 Similarly, to examine changes in v , fluid phantoms with a single [ ]c were flowed 

through our fluids system at varying velocities ranging from 1 mm s-1 to 8 mm s-1.  The 

particle concentration of these samples was constant at 6e-5 spheres/micron3, which 

resulted in a reduced scattering coefficient of 2.2 mm-1.  All other experimental variables 

were held constant at the same values as above.  ratioK values were calculated and plotted 

as a function of velocity. 
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 Thus our experiments individually assessed the sensitivity to both [ ]c and v .  That 

is, to both components of advective flux.  

 

4.  Results 

 The experiments described above were designed specifically to assess the 

sensitivity to the [ ]v c term of Eq.(12) and the results clearly show a dependence of ratioK

on this term, that is, on advective flux,  [ ]v c .  Both individual changes in v and [ ]c result 

in changes in ratioK .  Figures 33a and 33b display the results of the experiments aimed at 

assessing the sensitivity of LSCI to scattering particle concentration, [ ]c .  Figure (33a) 

presents the results in terms of changes in '
sµ , while Fig. (33b) presents the results directly 

in terms of particle concentration.  The velocity of the fluid in these experiments was 5.0 

mms-1. The solid lines represent the best-fit line in a least-squares sense.  The linear 

equations for these lines are, respectively, 

'0.072 0.0965ratio sK µ= − +  

(18) 

[ ]3.3 3 0.982 .ratioK e c= − − +  

Correlation coefficients for the relationships were 2 0.95r = and 2 0.97r = , respectively.  

Thus there is a strong, linear negative relationship between the concentration of scatterers 

and speckle contrast.  Of note in both plots are the points where [ ] 0c = .  That is, when 

contrast measurements were made using pure DI water.  The ratioK values in these cases 

were 0.9985, 0.9986, and 0.9984.  These values indicate that the glass tubing used in our 
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experimental flow system had negligible influence on the contrast values.  That is, the 

contrast in the glass tube was the same as the contrast in the surrounding static medium 

when no dynamic scatterers were present.  Thus, no correction for background scatter from 

the tube was necessary.   

 

Figure 33a.  ratioK vs. reduced scattering coefficient.  A strong negative correlation 

(r2=0.95) was found between the two variables.  The slope of the best fit line was -0.072.   
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Figure 33b.  ratioK vs. scatterer concentration.  A strong negative correlation 

(r2=0.97) was found between the two variables.  The slope of the best fit line 

was -3.3e-3. 

 

 The next set of experiments examined the relationship between the velocity of the 

moving fluid and speckle contrast.  Recall from above, that these experiments were 

conducted with samples having a ' 12.2 mmsµ
−= . This value was somewhat arbitrarily 

chosen because it lies near the middle of the range of scattering coefficients we examined.    

As above, a strong negative linear correlation was found between ratioK  and v .  The results 

are displayed in Fig. (34).   
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Figure 34.  Relationship between speckle contrast and the velocity of the 

moving fluid.  The fluid phantom had a reduced scattering coefficient of 2.2 

mms-1.  The correlation coefficient, 2  = 0.96r . 

 

The linear least-squares regression line was described by the equation: 

( )20.065 0.934 0.96 .ratioK v r= − + =


                                         (19) 

It is worth noting that the slope of this line is of the same order as the slope of the ratioK vs 

'
sµ line.  This observation appears to indicate that LSCI is equally sensitive to changes in 

velocity and scatterer concentration.   

 Combining the above results allows for an investigation into the sensitivity of LSCI 

to advective flux density, [ ]v c .  Because the results thus far indicate equal sensitivity to 

both velocity and scatterer concentration, vwas held constant at 15 mmsv −=
  and [ ]c was 



www.manaraa.com

122 

varied from [ ]0 1 4c e≤ ≤ − spheres per cubic micron.  Figure 35 shows the dependency of 

ratioK on [ ]v c . 

 

Figure 35.  Relationship between ratioK and advective flux.  A strong 

negative linear relationship was found (r2 = 0.97).   

 

Speckle contrast was found to decrease monotonically with increasing advective flux 

density following the linear relationship: 

( )20.66 0.982 0.97 .ratioK v r= − + =


                                    (20) 

This result clearly demonstrates that LSCI is sensitive to advective flux density.   

 It is certainly worth noting that the y-intercept is approximately 1.0.  It was 

demonstrated above that the glass tube had essentially no influence on the contrast values, 

so a y-intercept of 1.0 should be expected, assuming, as we did, that the first term on the 
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RHS of Eq. (12), that is the diffusive flux term, 
[ ] 0 .
c
x

∂
=

∂
 That the y-intercept is ~1.0, 

then, confirms the assertion that these experiments explicitly examined the influence of 

advective flux on LSCI. 

 

5.  Discussion 

 The results clearly demonstrate a negative linear dependence of K on both [ ]c and 

v  for our experimental arrangement.  It is worth noting that the experimental results 

presented herein indicate that LSCI is approximately equally sensitive to both changes in 

velocity and changes in scatterer concentration.  This is significant in that a change in 

scatterer concentration may be mistaken for a change in velocity when using LSCI.  This 

implies that in order to properly interpret LSCI data, which is typically used to assess a 

change in blood flow (or speed, or velocity) a change in scatterer concentration must be 

either logically or experimentally ruled out.  Such a change may arise from a change in 

hematocrit level, for example.  In most studies, a change in hematocrit can be ruled out 

physiologically.  However, one could envision LSCI being used in time-course studies 

were a change in hematocrit is possible or when comparing LSCI results between 

individuals, who may have different hematocrit.  In these cases, the results presented here 

indicate that [ ]c must be considered in the interpretation of those results.  A more detailed 

analysis of this is needed.  

 Our experiments were intentionally devised so as to focus on the second term on 

the RHS of Eq. (12).  That is, our experimental arrangement focused on the sensitivity of 

LSCI to advective flux density, [ ]v c .  An underlying assumption is that the diffusional 
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flux term of Eq. (12) is small.  That is, [ ] [ ]x
cD v c
x

∂
−

∂


 .  Other studies have focused more 

on the diffusional flux term, and although not couched in mass transport terms, 

demonstrated a clear dependence of LSCI on [ ]c
x

∂
∂

 .12   

 It is worth asking the question of how to interpret the y-intercept of Fig. (35) had it 

not been unity and was something less than 1.0.  The theoretical development and the 

experimental results appear to indicate that any reduction in ratioK when [ ] 0v c =
 must be 

due to random diffusional flux (i.e., the first term on the RHS of Eq. (12)).  Thus, the theory 

and experiments in this paper suggest an approach to determining the relative contributions 

of diffusional flux (unordered motion) and advective flux (ordered motion) to the reduction 

in speckle contrast.  This is discussed in more detail below with regards to choosing a 

proper statistical model to relate speckle contrast to particle motion. 

 Another issue to consider is that in our experiments, a solid, static scattering block 

was below and in the same DOF as the dynamic, flowing scatterers.  One could argue that 

our experiments merely demonstrate that as [ ]c increases, the influence of the static 

scatterers, which by themselves should result in a high contrast value of 1.0K → is 

reduced.  The usual argument explaining this phenomenon is that as more and more moving 

scatterers are introduced to the imaged volume, the number of speckle fluctuations will 

also be increased, diminishing the overall influence of the static scatterers.  If we were 

considering laser Doppler flowmetry, we would make the argument that the fraction of 

Doppler-shifted photons increases with an increase in the number of scatterers.3 Indeed, 
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these arguments are correct. However, they do not diminish our results that indicate that 

LSCI is sensitive to advective flux.  

 The one cautionary note regarding the influence of static scatterers is that the 

proportionality constants that we report relating ratioK to [ ]c may not be entirely 

generalizable and may vary depending upon the experimental arrangement due to the 

scattering properties of the background material.  However, by reporting ratioK values as 

opposed to purely values of K , this influence of background scatterers is reduced and the 

results should be fairly generalizable. Note that in living tissue, there are no scattering 

volumes in which the speckle arising from the volumes has a decorrelation time cτ →∞ .  

That is, there are no static scatterers and speckle from living tissue will always have a finite

cτ . 

 The question of the proper statistical model for describing the underlying motion 

of the scattering particles and ultimately relating this model to the observed contrast arises 

frequently in the LSCI literature where it is either directly addressed,2,3 or one statistical 

model or the other is implicit in the analysis.5  The two limiting behaviors as discussed 

above in the Theory section are random (Brownian) motion and ordered motion.  

Ultimately, these two limiting behaviors give rise to Lorentzian and Gaussian correlation 

functions, respectively, that relate contrast K and the decorrelation time, cτ , of the 

observed speckle.  Frequently, the discussion surrounding the proper choice of the 

statistical model gives the appearance that this is a binary choice.  One has to either assume 

a Gaussian or a Lorentzian model.  Although it has been proposed that a Voigt model might 
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be a logical alternative and that this Voigt model is a convolution of the Lorentzian and 

Gaussian line shapes.8   

 The theoretical development, above, resulting in Eq. (7) for the 2-D case and Eq. 

(12) for the 1-D case, along with the experimental findings, lends credence to the choice 

of a Voigt model.  From these equations, it becomes apparent that this model selection is 

not binary, but is actually points along a continuum, with the Lorentzian and Gaussian 

models serving only as the outer limits to the continuum.  Inspection of Eq (12) reveals 

that LSCI is sensitive to both diffusive flux, LJ and advective flux density, GJ , where the 

total flux, KK L GJ J J= + .  If the particle motion is assumed to be entirely random 

(Brownian), then LSCI is revealing LJ and the Lorentzian model should be adopted.  

Alternatively, if the particle motion is assumed to be entirely ordered, then LSCI is 

revealing GJ and the Gaussian model should be adopted.  However, in most normal cases 

of interest both components of total flux will be present and the appropriate statistical 

model is some combination between the Lorentzian and Gaussian models.  As suggested 

above, one solution to this is to employ a Voigt model8 which is the convolution of the 

Lorentzian and Gaussian models, or some other weighted linear combination of the two, 

where the weights reflect the relative contributions of diffusive flux and advective flux.  

Readers are referred to Duncan and Kirkpatrick8 for more details on this model.  When 

viewed in terms of mass transport, then, it becomes apparent that the oft cited binary 

decision between the Lorentzian and Gaussian models is a false decision and that these two 

models are simply limiting behaviors governed by the diffusion with drift equation.9 
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 In summary, we have viewed LSCI from a mass-transport perspective and 

demonstrated that by adopting the diffusion with drift equation (Eq. (12) for the 1-D case), 

a theoretical basis for understanding the sensitivity of LSCI to both particle concentration 

and speed (or velocity) can be shown.  Furthermore, this same mass-transport approach, 

invoking the diffusion with drift equation, draws a mathematical and physical linkage 

between random and ordered motion of particles. This single equation (e.g., Eq. (12)) 

adequately describes both behaviors as limiting conditions on contrast values. Finally, 

when discussing LSCI, we encourage the use of the term flux, and in particular diffusive 

flux and advective flux density (as opposed to terms such as perfusion, flow, velocity and 

speed) to describe the physical variable to which LSCI is sensitive. 
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Abstract.  The dynamic behavior of phase singularities, or optical vortices, in the pseudo-

phase representation of dynamic speckle patterns was investigated.  Sequences of band-

limited, dynamic speckle patterns with pre-determined Gaussian decorrelation behavior 

were generated and the pseudo-phase realizations of the individual speckle patterns were 

calculated via a 2-D Hilbert transform algorithm.  Singular points in the pseudo-phase 

representation were identified by calculating the local topological charge as determined by 

convolution of the pseudo-phase representations with a series of nabla filters.  The 

spatial locations of the phase singularities were tracked over all frames of the speckle 

sequences and recorded in 3-D space , where is frame number in the sequence.  

The behavior of the phase singularities traced ‘vortex trails’ that were representative of the 

speckle dynamics.  Slowly decorrelating speckle patterns resulted in long, relatively 

straight vortex trails, while rapidly decorrelating speckle patterns resulted in tortuous, 

relatively short vortex trails.  Optical vortex analysis such as described herein can be used 

as a descriptor of biological activity, flow and motion. 

  

2 X 2

( ), ,x y f f
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Introduction 

Speckle fields arising from scattering media such as biological tissue contain locations of 

zero intensity and undefined phase.  The phase in the immediate vicinity of these singular 

points rotates through a full 2 radians along a circular path surrounding these points.  This 

spiral behavior of the phase values has led to these singular points being referred to as 

optical vortices. Optical vortices may be described in terms of topological charge with 

each vortex typically possessing a topological charge of , depending upon the direction 

of rotation of the phase values,1,2 however higher order charges are possible.  As a direct 

outcome of the principle of conservation of charge, vortices only appear in pairs, with one 

member of the pair possessing a topological charge of and the other pair member 

possessing a topological charge of .   This further implies that optical vortices can only 

be created and destroyed in pairs.  As the scattering particles in the dynamic media move, 

the phase in the scattered field, and therefore the locations of the optical vortices, also 

changes in a related fashion.   The behavior of optical vortices and beams that contain 

optical vortices has received much attention lately.2-4 Much of this attention has focused 

on the density and the behavior of the optical vortices as the field propagates through a 

turbulent atmosphere.2,4  Sendra et al.5 evaluated vortex behavior in dynamic speckle 

images and pointed to the biological and industrial applications of analyzing vortex 

activity.  They note that there is a strong relationship between the motion of a scattering 

diffuser and the resultant motion of the optical vortices in the observed dynamic speckle 

pattern.   

π

tn

1±

1+

1−
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 The apparent robustness of optical vortices combined with the observation that the 

vortices in a dynamic, stochastic optical field move in a manner that is correlated with the 

motion of the scattering particles (or medium) implies that optical vortex behavior may be 

used as a surrogate for understanding the dynamic behavior of scattering media.  Particular 

applications in biomedicine where vortex analysis may be of use include investigating the 

dynamic behavior of scattering suspensions, particle sizing, monitoring cellular activity, 

and microcirculation studies, for example.  The purpose of this Letter is to demonstrate one 

approach to studying optical vortex behavior in simulated speckle intensity patterns that 

exhibit dynamic behavior similar to that observed when coherent light is scattered by 

biological tissues. 

 To investigate the spatio-temporal behavior of optical vortices in dynamic speckle 

patterns, we generated sequences of band-limited dynamic speckle patterns in the Matlab 

environment using the numerical method we described in an earlier publication.6 Using 

this approach, we were able to generate fully developed, dynamic speckle patterns with 

very well controlled first and second order statistics and also with prescribed decorrelation 

behavior.  Following the generation of the speckle sequences, the pseudo-phase  7 of the 

speckle patterns was generated using a 2-D Hilbert transformation of the speckle patterns.  

It must be noted that this representation of is not unique and an entirely different 

representation of the pseudo-phase can be generated if, for example, one were to employ a 

2-D Fourier transform in place of the Hilbert transform. This is the classic phase retrieval 

problem.  However, regardless of the numerical method used to generate the pseudo-phase, 

the operation simply exploits information already present in the signal without adding any 

new information.5  Once a 2-D representation of is generated, the singular points that 

φ̂

φ̂

φ̂
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identify the optical vortices can be located.  These points then can be tracked as the speckle 

pattern dynamically evolves. 

 We begin our formal discussion of the problem by noting that the complex 

representation of an optical field and its relationship to the intensity image is given by 

 

(1) 

 

where the phasor amplitude of the field, A, is itself a complex-valued function of space.  

The local true phase of the field is defined as usual as .  To 

generate a 2-D representation of the pseudo-phase from we use a Hilbert 

transform in 2 dimensions such that  

 

and 

  (2)  

 

The phase singularities are defined in terms of : 

(3) 

where is the local phase gradient and the contour integral is taken over path  on 

a closed loop c  around the vortex.  It is clear that everywhere  is differentiable, 

except at the singularity where the phase is undefined.  Since is a continuous function, 

and has continuous first derivatives, by Stokes theorem we can see that 
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(4) 

 

where D is a disc of radius a enclosing the circular path over which is evaluated.8,9   This 

formulation suggests that the locations of the optical vortices can be determined efficiently 

through a series of convolution operations: 

 

(5) 

 

 

 

and is the convolution operator.  Figures 36(a), 36(b), and 36(c) display a numerically 

synthesized speckle pattern, its pseudo-phase representation, and the pseudo-phase 

representation with the optical vortices indicated by the superimposed stars and circles, 

respectively.  Here, the vortices with positive topological charge are indicated by green 

stars and those with a negative topological charge by red circles.   

 Two sequences of 100 dynamic speckle patterns each were generated numerically.  

These speckle sequences displayed temporal decorrelation behavior as shown in Fig. 37.  

From this figure, it is seen that both sequences exhibited Gaussian decorrelation behavior, 

but with drastically different characteristic times.  The ‘fast’ sequence was defined by a 

time constant of frames, while the ‘slow’ sequence was characterized by a longer 

time constant frames.  For both sequences, pseudo-phase representations were 

generated for each frame and the locations of the vortices identified.  These locations were 

tn
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then plotted in , where is frame number in the sequence.  Following the 

convention of Fig. 36(c), the positive charged vortices were plotted in green stars and the 

negatively charge vortices were plotted in red circles. 

 The results of this operation are shown in Figs. 38(a) and 38(b).  Several 

observations can be made regarding these figures.  A key observation is that the vortices 

are robust.  That is, individual vortices persist through at least several frames, even in the 

rapidly decorrelating speckle example.  The locations of the individual vortices over 

several frames trace a path, or a vortex trail.  In the rapidly decorrelating speckle sequence, 

the vortex trails are relatively short and tortuous (Fig. 38(a)).  However, in the slowly 

varying sequence, the vortex trails are quite long and trace a much straighter path (Fig. 

38(b)).  It is clear that in the limit of a truly static speckle sequence, the vortices would 

maintain their positions through all frames, .  Careful examination of Figs. 38(a) 

and 38(b) also reveals locations where positively and negatively charged optical vortices 

annihilate each other.  Elsewhere, new vortices are formed.  These events always occur in 

pairs (i.e., both a positively and a negatively charged vortex is either destroyed or created) 

and arise due to the conservation of charge principle.4   

 In an actual, physical setting, the motion of the speckles arising from scatter from 

biological tissues arises from numerous sources, including but not limited to the random 

motion of cellular activity and from the more ordered motion of red blood cells, for 

example.  We may generalize and simply say that motion in these speckle patterns is from 

biological activity.  From this discussion, it becomes apparent that the spatio-temporal 

behavior of optical vortex trails is an indicator of biological activity and that specific 

imaging configurations and experiments could be designed to focus on one particular type 

( ), ,x y f f

( ),x y f
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of motion.  For example, one could coherently image cell sheets and use the above vortex 

analysis to quantify cellular metabolic activity.  Alternatively, it is feasible that one could 

coherently image the microcirculation and use vortex analysis to study microcirculatory 

flow.   
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Figure. 36  Example of a band-limited numerically generated speckle pattern (a), its 

pseudo-phase representation (b) and the pseudo-phase representation with the positively 

charged (green stars) and negatively charged (red circles) optical vortices identified (c). 
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Figure. 37  Autocorrelation functions of the rapidly decorrelating speckle sequence 

versus the more slowly decorrelating speckle sequence used in this study. 

 

 

Figure. 38  Three-dimensional representation of the vortex trails for the rapidly 

decorrelating speckle sequence (a) and the more slowly decorrelating speckle 



www.manaraa.com

142 

sequence(b).  The green stars represent the positively charged vortices and the red circles 

represent the negatively charged vortices. 
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Abstract. Before laser speckle contrast imaging (LSCI) can be used reliably in a clinical 

setting, there are several theoretical and practical issues that must be addressed. In order 

to address some of these issues, an electro-optical system that utilizes a nematic liquid 

crystal spatial light modulator (SLM) to mimic LSCI experiments was assembled.  Using 

this system, experimental parameters that influence LSCI were varied in a systematic 

fashion. Herein, the performance and application of the system for investigating LSCI is 

demonstrated.  Specifically, the ability of the SLM-based system to generate speckle 

patterns with a controlled minimum speckle size, probability intensity distribution, and 

decorrelation behavior is shown.  The ability to produce LSCI images that mimic flow 

assuming both Lorentzian and Gaussian flow models is presented.  By eliminating many 

experimental parameters, this system is capable of serving as a useful intermediary 

between computer simulation and physical experimentation.  
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1. INTRODUCTION 

Laser speckle contrast imaging (LSCI) is a simple, non-invasive, low cost method that 

offers the potential of assessing blood flow and perfusion in near-real time. It has become 

commonplace for LSCI and its variations to be used in full-field qualitative visualization 

of blood flow.1,2  However, there are numerous challenges, as well as theoretical and 

practical limitations, that remain unresolved in using LSCI to make quantitative 

measurements of flow and perfusion.3  Furthermore, even for qualitative assessment of 

blood flows, there are compounding issues such as changes in hematocrit that manifest as 

changes in bulk blood optical properties that appear identical to relative changes in blood 

flow.  Without a priori knowledge of the scattering and absorption coefficients of the 

blood, it is impossible to discriminate between changes in flow and changes in blood 

optical properties.4  In addressing these issues, it is often difficult to isolate the variables 

under investigation due to the interdependence of many of the experimental parameters. 

For example, flow (or velocity), camera integration time, and assumed flow model all 

interact with each other to yield a particular contrast value.3 While phantom flow studies 

are useful, there are often issues that arise from the experimental design, such as the effects 

of tubing on the scattering characteristics, unanticipated fluctuations in the flow pattern, 

clumping of scatterers, and challenges with reproducibility. Additionally, there remains an 

uncertainty as to the proper flow model used to describe the stochastic behavior of the 

scattering particles.3 

 The goal of this paper is to present an optical system incorporating a spatial light 

modulator that can faithfully reproduce laser speckle contrast images in a highly controlled 

and reproducible fashion and permits for the isolation of a single experimental parameter 
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while not varying any others. This optical system permits control of the speckle size, the 

decorrelation behavior of the ‘scatterers’ (and the resulting speckle patterns), the first-order 

speckle statistics of the speckle patterns (i.e. the intensity probability distribution), the ratio 

of static to dynamic scatterers, the mathematical relationship between contrast values and 

the assumed flow model, the camera integration time and frame rate, and all other data 

acquisition variables. The objective of this system is to generate dynamic speckle patterns 

that are statistically similar to experimental speckle patterns observed from biological 

tissue in order to address single LSCI experimental parameters and their effects on contrast 

image quality.  The overarching goal is to employ this electro-optical system to optimize 

the approach to this imaging modality. 

 

2 METHODS & MATERIALS 

The optical layout can be seen in Figure 39. A stabilized HeNe laser (633nm) illuminated 

a 512 x 512 spatial modulator (Boulder Non-linear Systems) via a beam splitter that 

returned the scattered light to a CMOS camera through a 4ƒ imaging system with an 

adjustable aperture stop located in the Fourier plane of the front lens. Varying the diameter 

of the aperture opening changes the minimum speckle size observed on the camera. 

Reducing the opening of the aperture resulted in larger speckles, while increasing the 

diamter resulted in smaller speckles.5  The light passed through a neutral density filter, 

allowing adjustable incident intensity. The beam was passed through a spatial filter and 

collimated before passing through a λ/2 plate. The half-wave plate served to orient the 

polarization of the incoming light in the vertical plane so that the SLM functioned in the 
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‘phase-only’ mode. By operating in the phase-only mode, the light backscattered from the 

SLM was de-phased in the same way as if it were scattered from a rough surface or a 

scattering volume. The polarizer in the imaging arm was oriented in the same plane as the 

incident light. This resulted in observing only a single component of the electromagnetic 

wave on the CMOS array and thus generating a polarized speckle pattern.  

 To generate the speckle patterns from the SLM, a sequence of phase screens, 

typically 50 frames in length, was loaded to the SLM. The phase screens were generated 

by filling a 512 x 512 array with complex numbers of unit amplitude, and phases uniformly 

distributed over (0, 2π). Thus, the light scattered from each individual SLM element was 

dephased and the resulting scattered wavefront had an identical phase distribution.  The 

scattered light was, however, still temporally and spatially coherent allowing for random 

interference to occur when the scattered light impinged on the CMOS chip of the camera, 

resulting in a speckle pattern.  

 By controlling the temporal decorrelation behavior of the phase screens, the 

temporal decorrelation behavior of the resulting speckle patterns was varied.6  In addition 

to controlling the rate of temporal decorrelation, the shape (e.g., Gaussian, exponential, 

etc.) of the decorrelation curve was also variable.6  Different regions on the SLM were 

capable of displaying different decorrelation behaviors.  Thus regions of ‘fast’ 

decorrelation and ‘slow’ decorrelation were able to be created to mimic an LSCI image of 

a vessel with flow (fast) surrounded by slower moving tissue regions. 

 To generate the LSCI image seen in Figure 40 multiple sequential frames of the 

speckle patterns from the CMOS array were summed to simulate the finite exposure time 

that results in the contrast seen due to temporal averaging. Contrast was defined as 
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                                                                                                                                                  (1) 

 

where  is the mean intensity and  is the standard deviation of the intensity of a 7 x7 

window of pixels slid across the image at location 𝑟𝑟.1  For a single, static, polarized speckle 

pattern, the global contrast attains a theoretical maximum of unity.  For time averaged, 

dynamic speckle patterns the global contrast is less than unity.  It should be noted, however, 

that these global contrast values have their own statistical distributions.7 

 

3 RESULTS 

 Figure 40 demonstrates a simulated laser speckle contrast image using the SLM-

based system. A ‘vessel’ region with flow in the center section of rows de-correlated at a 

faster rate than the surrounding pixels, which represents more slowly varying speckles from 

the surrounding ‘tissue’.   

 A goal of this study was to demonstrate the ability to control both the first- and 

second-order statistics of the speckle patterns generated by the SLM. The first-order 

statistics of the speckle pattern are described by the intensity probability distribution 

function (PDF). For a polarized speckle pattern, the theoretical PDF is a negative 

exponential.5 Figure 41a demonstrates the ability to reproduce a single speckle pattern with 

a negative exponential PDF. In cases where multiple speckle patterns are incoherently 

summed, the PDF of the resultant speckle pattern is described by a Rayleigh PDF.  In 

practice, such a speckle pattern is seen when observing speckle from a volume scatterer, 

such as tissue, without using a polarizer to isolate a single component of the 
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electromagnetic field.  Figure 41b demonstrates the system’s ability to reproduce speckle 

with a Rayleigh PDF by summing on an intensity basis multiple individual, polarized 

speckle patterns.  The number of speckle patterns that need to be summed to generate a 

speckle pattern with an intensity PDF as in Fig. 41a depends upon the decorrelation 

behavior of the speckle sequence.  The lower the correlation between subsequent speckle 

patterns, the fewer individual patterns need to be summed.  In the limiting case, only 2 

speckle patterns are necessary if they are statistically independent from one another.5 

 To control the size of the speckle, the aperture stop in the Fourier plane of the front 

lens was varied. Figure 42a displays a single speckle pattern from the SLM and its power 

spectrum (Figure 42b), which was used to estimate the minimum speckle size in the 

pattern.5 The minimum speckle size relative to the CMOS chip pixel size (5.2 μm) as the 

diameter of the aperture was varied is shown in Figure 42c. 

 Another goal of this study was to demonstrate the ability to control both the rate 

and the pattern of the temporal decorrelation of the speckle pattern sequences. To achieve 

this, we generated speckle patterns that exhibit Gaussian decorrelation behavior with 

varying time constants, as seen in Figure 43a, b, and c.  Figure 43d also demonstrates our 

ability to change the shape of the autocorrelation function, showing a Lorentzian 

autocorrelation function plotted along with a Gaussian autocorrelation fucntion. When 

generating the phase screens, we invoke the Wiener-Khinchin theorem8 to recall that an 

exponential and a Lorentzian form a Fourier pair, as does a Guassian and a Gaussian. That 

is, when the phase screens exhibited a Gaussian decorrelation behavior, the resulting 

speckle pattern sequence also exhibited Gaussian behavior.  When the phase screens 
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exhibited an exponential decorrelation behavior, the speckle sequence exhibited Lorentzian 

behavior. 

  In LSCI, unlike laser Doppler measurements, the link between speckle contrast and 

flow (or velocity) can only be made if the velocity distribution is known. However, the 

actual velocity distribution of biological fluid is often unknown in LSCI experiments. Early 

work has assumed the flow of blood to exhibit either purely unordered (Lorentzian) or 

ordered (Gaussian) flow.2, 9, 10  Theoretically, a Lorentzian velocity distribution is only 

appropriate for Brownian motion (purely random flow). Conversely, a Gaussian velocity 

distribution is technically only appropriate for purely ordered flow. In paractical 

situaations, it is likely that the true flow model lies somewhere between the Lorentzian and 

Gaussian models.  Some workers have suggested what is essentially a rigid-body model 

that is simply the convolution of the Lorentzian and Gaussian flow model.3 Because 

assumptions are made to describe the fluid velocity distribution, the unambiguous 

quantification of flow velocity from contrast values is not yet possible.  

 In addition to controlling the temporal decorrelation of the speckle images, we have 

also demonstrated our ability to reproduce contrast values that follow the theoretical curves 

using both accepted flow models.1 The experimental contrast values were compared to the 

theoretical values as a function of the ratio of the speckle decorrelation time, τc, and the 

integration time, T. The results are shown in Figure 44, which displays a comparison of 

theoretical and experimental results. 

4 CONCLUSIONS 

  We have shown the ability of our system to faithfully reproduce the speckle images 
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used in LSC imaging. Because our electro-optical system allows for fast experimentation 

and reproduction, this system provides a convenient and quantifiable platform to address 

many of the real-world complications that hinder the future development LSCI. It is hoped 

that through this approach, the fine details of LSCI can be explored in more detail and 

further development of the imaging modality as a reliable and inexpensive research and 

diagnostic tool can proceed. 
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Figures 

 

Figure. 39. Optical layout of the LSCI simulating system. The laser was a 2.5mW 

stabilized HeNe (633nm) and the image magnification equaled ~ 0.61. 

 

 

Fig. 40. (a) Phase screen loaded to the SLM. (b) The resulting imaged speckle pattern. (c) 

Simulated LSC image. The center rows in (2c) represent the ‘flow’ region. The contrast 

ratio between the static and dynamic regions was 4.108 
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Fig. 41. Intensity PDF’s of SLM generated speckle patterns plotted along with numerically 

simulated (theoretically ideal) speckle patterns. (a) Fully developed, polarized intensity 

PDF showing both experimental (SLM) and theoretical speckle patterns in agreement. (b) 

Non-polarized intensity PDF showing both experimental and theoretical results in 

agreement. 
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Figure 42. (a) SLM generated speckle pattern (b) SLM generated speckle PSD.  The 

minimum speckle size in this case was 4 pixels. (c) Variation in speckle size is plotted as 

a function of the aperture diameter, with a fitting function overlaid for future calibration. 

 

(a) 
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(b) 
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(c) 

 
(d) 

Figure 43(a-c). Decorrelation curves for SLM speckle patterns with different correlation 

behaviors (top 3 figures). From the left, the decorrelation times were 70, 37 and 17 frames, 

respectively. (d). Demonstration of both Lorentzian and Gaussian decorrelation behaviors 

(bottom). 
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Figure 44. SLM simulated contrast vs τ𝑐𝑐
𝑇𝑇

 for both a Gaussian and Lorentzian velocity 

distribution. The SLM set-up was able to faithfully reproduce the expected results for both 

flow models.  
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ABSTRACT 

Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for 

visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering 

particles results in a reduction in global and regional speckle contrast.  A variety of 

parameters can affect the calculated contrast values in LSCI techniques, including the 

optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of 

blood is of interests, hematocrit levels influence optical properties. In this work we 

considered the combined effects of both the scattering and absorption coefficients on LSCI 

measurements on a flow phantom. Fluid phantoms consisting of various concentrations of 

neutrally buoyant ~10 micron microspheres and india ink mixed with DI water were 

formulated to mimic the optical properties of whole blood with various levels of 

hematocrit.  In these flow studies, it was found that an increase in µa and/or µs led to a 

decrease in contrast values when all other experimental parameters were held constant.  

The observed reduction in contrast due to optical property changes could easily be confused 

with a contrast reduction due to increased flow velocity.  These results suggest that optical 

properties need to be considered when using LSCI to make flow estimates. 
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INTRODUCTION 

Laser speckle contrast imaging (LSCI) and its many variants are full field imaging 

modalities that are commonly employed for the qualitative visualization of blood flow.1-2 

Yet, there still remain numerous issues that prevent LSCI from becoming a truly 

quantitative tool3 that can be used reliably in time course studies, population comparisons, 

or even as an imaging modality that can be used to directly compare studies across 

laboratories or clinics.  One unresolved issue is the influence of the optical properties on 

the speckle contrast levels observed in LSCI.  

The purpose of the present study is to systematically investigate how changes in the 

reduced scattering coefficient  and the absorption coefficient  influence the observed 

contrast values in an LSCI flow model.  Conceptually, it is readily obvious that speckle 

contrast must be influenced by the number of moving scatterers in the imaging volume.  If, 

for example, all of the scatterers were static, and only one polarization component of the 

scattered light is observed, then the contrast, K, defined as  

 

                                                                                    (1) 

 

where  is the mean intensity of a small window (7 x 7 in the present case) of pixels at 

location r and  is the standard deviation of the intensity over the same window, will 

equal unity.  If only a small number of moving scatterers are added, then the fluctuations 

in intensity due to these dynamic scatterers will lead to a small reduction in K.  As the 

proportion of moving scatterers is increased, the relative influence of the moving scatterers 
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relative to the static scatterers will increase leading to a further reduction in contrast.  Our 

experiments mimicked this thought experiment.  Additionally, however, we also 

systematically added an absorber (india ink) to our flow phantom to observe the 

confounding influence of . 

 

MATERIALS AND METHODS  

A simple flow system was developed to provide controlled flow of a fluid phantom material 

through 2mm (i.d.) glass tubing where it was imaged with an LSCI system.  The flow (at 

this point we do not need to differentiate between perfusion and velocity and the term 

‘flow’ can be interpreted as velocity, either simply the magnitude or, since we have a priori 

knowledge of the direction, the full velocity vector with units of distance/time, or perfusion 

which involves a concentration and contrasts with rate of flow with units of volume per 

unit of time) system consisted of a mini-peristaltic pump controlled by a microcontroller 

(Arduino).  Small diameter rubber tubing carried the flow to the imaging region where the 

rubber tubing connected to the aforementioned glass tubing. The glass tubing rested in a 

small groove (3mm diameter) on the surface of a white plastic block. The flow velocity 

was constant at 5mm/s for all experiments. 

The LSCI imaging was accomplished by illuminating the flow phantom with a polarized 

660nm diode laser (80mW) at a slight off-axis angle to help reduce specular reflection in 

the images.  The backscattered dynamic speckle patterns were recorded with a CCD camera 

at 125 fps.  The camera integration time was 6ms.  A polarizer oriented to transmit the 

same polarization state as the illuminating light was placed in front of the camera.  In order 

aµ
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to ensure that the speckle pattern was spatially sampled correctly (i.e., minimum speckle 

size > 2 pixels), the lens was set to f/32.  Care was taken to avoid specular reflection from 

the glass tubing.  Sequences of 100 frames were taken for each experiment.  All imaging 

and flow parameters we kept absolutely constant for all experiments.  The only variables 

changed in a systematic manner were  and  . 

A MATLAB GUI controlled the flow system and the camera and also provided near-real 

time contrast images to the computer screen. 

Flow phantoms were made by adding careful concentrations of a poly-disperse powder of 

9-13 micron diameter glass microspheres (brand name of Luxil) to DI water.  The spheres 

had a reported specific gravity of 1.1 g/cc.  Solutions of microspheres were mixed so as to 

produce an array of 10 (11 including pure DI water) solutions with varying scattering 

coefficients.  The scattering coefficients were measured using a ballistic transmission 

method.  Subsequent inverse Mie scattering calculations revealed that although the 

solutions were poly-disperse, the scattering behavior mimicked that of an ~11 micron 

monodisperse system.  Mie calculations yielded a scattering anisotropy of ~0.99.  The 

resulting scattering coefficients of the flow phantoms ranged  including 

the pure water sample. 

Additionally, another array of 11 solutions containing india ink as an absorber were 

constructed.  Absorption coefficients ranged  . 

The two sets of solutions were combined to create an 11 x 11 matrix of phantom solutions 

with varying scattering and absorption coefficients.  Scattering coefficient was varied 

'
sµ aµ
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across rows and absorption coefficient was varied across columns.  Three samples of 

phantom solutions were made for each element of the matrix.   

Two hundred raw speckle images were recorded per phantom sample as they flowed 

through the system, thus each experiment lasted only 1.6 sec.  The field of view for each 

image included not only the glass capillary, but also portions of the white plastic block.  

This allowed for the generation of a ratio between the contrast calculated via Eq (1) from 

the static block and from the moving flow phantom material.  Thus for the purposes of this 

study, . 

RESULTS 

A negative linear relationship was seen between  and  and between  and .  

The absolute magnitudes of the  values as a function of  were clearly dependent on 

the associated magnitude of .   Likewise, when assessing the contrast as a function of 

absorption coefficient, the absolute magnitude of  was dependent upon the associated 

values of the scattering coefficient (Figures 45 & 46). 
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Figure 45.  Relationship between contrast (  ) and  .  Each best fit line 

represents a single  , with the    largest  values at the bottom.  There are no 

significant differences between slopes.   . 

 

Figure 46. Relationship between contrast ( ) and .  Each best fit line 

represents a single  , with the    largest  values at the bottom.  There are no 

significant differences between slopes.  . 

 

RatioK sµ

aµ aµ

0.0374Ratio sK µ∝ −

RatioK aµ

sµ sµ

1.28 3Ratio aK e µ∝ −



www.manaraa.com

168 

Likewise, when the effects of the total attenuation coefficient  on  were 

evaluated, there was a significant negative relationship found (Figure 47). 

 

Figure 47.  Effects of  on .  A significant negative relationship between the 

variables was found.  . 

The effect of flow velocity was also evaluated at a constant  and .  It was found that 

 where  is velocity (mms-1).   

SUMMARY & CONCLUSIONS 

The results reported here represent the first systematic evaluation of the effects of the 

optical properties of the dynamic scattering medium on the contrast observed in LSCI.  It 

was observed that when all other experimental parameters were kept constant, contrast 

decreased in a predictable fashion.  On conceptual grounds, the results are not unexpected. 

What was unexpected, was that the effects of  on the contrast values was more 

pronounced than that of velocity .  Specifically, and   
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The difference in these proportionalities is on the scale of a single order of magnitude.  

These results imply that LSCI is more sensitive to small changes in scattering properties 

than it is to small changes in flow velocity.  This can have significant implications when 

using LSCI for time course studies, for comparing different populations, and for inter-

laboratory comparisons for example.   

Changes in blood hematocrit result in changes in .  Thus, if there is a hematocrit change 

during the course of a study, or between populations, this must be considered when 

interpreting LSCI data.  When using LSCI for imaging blood flow, it is recommended that 

the of the blood be measured and considered as a significant variable in the data analysis. 
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Abstract. Before laser speckle contrast imaging (LSCI) can be used reliably & 

quantitatively in a clinical setting, there are several theoretical and practical issues that 

still must be addressed. In order to address some of these issues, an electro-optical system 

that utilizes a nematic liquid crystal spatial light modulator (SLM) to mimic LSCI 

experiments was assembled. The focus of this manuscript is to address the issue of how 

incident intensity affects LSCI results. Using the SLM-based system, we systematically 

adjusted incident intensity on the SLM and assessed the resulting first- and second-order 

statistics of the imaged speckle to explain the corresponding spatial contrast values in both 

frozen and time-integrated speckle patterns. The SLM-based system was used to generate 

speckle patterns with a controlled minimum speckle size, probability intensity 

distribution, and temporal decorrelation behavior. By eliminating many experimental 

parameters, this system is capable of serving as a useful intermediary tool between 

computer simulation and physical experimentation for further developing LSCI as a 

quantitative imaging modality.  
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1. INTRODUCTION 

Laser speckle contrast imaging (LSCI) is a simple, non-invasive, low cost method that 

allows for the assessment of blood flow and perfusion in near-real time. It has become 

common place for LSCI and its variations to be used in full-field qualitative visualization 

of blood flow.1, 2  However, there are numerous experimental challenges, as well as 

theoretical and practical limitations, that remain unresolved in using LSCI to make 

quantitative measurements of flow and perfusion.3 Furthermore, for both quantitative and 

qualitative assessment of blood flows, there are compounding issues such as changes in 

hematocrit that manifest as changes in bulk blood optical properties that appear identical 

to relative changes in blood flow. Without a priori knowledge of the scattering and 

absorption coefficients of the blood, it is impossible to discriminate between changes in 

flow and changes in blood optical properties.4 It is worth noting that the term perfusion is 

used to describe a relative motion of scatterers in blood vessels. When referring to flow, 

we describe a volume of scatterers. Because scatterer density has been shown to affect the 

measured contrast in LSCI4, when we refer to flow and perfusion, we are implying a 

volume movement of scatterers in time.  

 In addressing experimental, theoretical and practical issues in LSCI, it is often 

difficult to isolate the variables under investigation due to the interdependence of the many 

experimental parameters. For example, flow, camera integration time, optical arrangement, 

laser power, and assumed flow model all interact with each other to yield a particular 

contrast value3,5. While phantom flow studies are useful, there are often issues that arise 

from the experimental design, such as the effects of tubing on the scattering characteristics, 

unanticipated fluctuations in the flow pattern, clumping of scatterers, and challenges with 
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reproducibility that affect the LSCI results. The challenges associated with phantom flow 

studies often manifest as noise in the measured contrast value, making it difficult to control 

single experimental variables. Additionally, computer modeling is useful in understanding 

the theory behind LSCI, but does not sufficiently address the challenges associated with 

experimental LSCI.  

 To address the effects of experimental settings used in LSCI, we utilize an electro-

optical system employing a spatial light modulator (SLM) that can faithfully produce LSC 

images in a highly controlled and reproducible environment.6 The system allows for the 

isolation of single experimental parameters while not varying any others. This optical 

system permits control of many experimental settings, namely, speckle size, decorrelation 

behavior of the ‘scatterers’ (and the resulting speckle patterns), the first-order speckle 

statistics of the speckle patterns (i.e. the intensity probability distribution), the ratio of static 

to dynamic scatterers, the mathematical relationship between contrast values and the 

assumed flow model, the camera integration time, and the frame rate. As the objective of 

this system is to generate dynamic speckle patterns that are statistically (and visually) 

similar to experimental speckle patterns observed from biological tissue, having the ability 

to isolate each variable independently means that we can adjust our settings to account for 

known interdependencies and assess unknown interdependencies between experimental 

parameters and measured contrast, whilst having the freedom to address other real 

experimental variables. For example, the speckle/pixel size ratio has been shown to have 

an effect on measured contrast value.7 Our system allows us to easily adjust the speckle 

size to ensure that the speckle patterns are sampled spatially in any manner desired by the 

operator. Once the speckle size is fixed, we can then adjust experimental parameters, such 
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as incident intensity, and assess the effect on measured contrast values as well as the 

resulting effect on the frequency content of the speckle image.  

 LSCI is limited by the uncertainty as to the proper flow model used to describe the 

stochastic behavior of the scattering particles.3 Because of this limitation, the dynamic 

speckle generated via reflection from the SLM is created using an assumed model. It is 

worth mentioning that the flow model used in mimicking speckle can be easily adjusted by 

the user to any model desired, which may serve as a valuable method of comparison 

between various models of behavior of the scattering particles in the future.   

 In this work, we focus on adjusting the total intensity of the speckle patterns at the 

imaging plane and assess the statistics of the resulting speckle patterns. In many practical 

applications, intensity is addressed as a laser power density incident on a phantom or tissue. 

When a coherent light source illuminates biological tissue, the photons transmit through, 

absorb, and scatter within the tissue. Because the amount of energy lost within the tissue 

can vary greatly between experiments, as well as tissue types in human application, the 

resulting backscattered light intensity arriving at the imaging plane can have varying levels 

of intensity. Because of this, describing the incident intensity at a medium does not 

sufficiently address whether or not the camera is receiving sufficient illumination. We seek 

to eliminate the variation seen in experimental procedures by addressing the statistical 

properties of the speckle patterns with varied intensities, as detected by the camera. We 

address the quantization of camera gray values across a wide range of incident laser power 

densities, presenting a guideline that can be used when adjusting both camera and laser 

settings in future applications of LSCI.  
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2 METHODS & MATERIALS 

The optical layout can be seen in Fig. 48. A stabilized 2.5 mW HeNe laser (633nm) 

illuminated a 512 x 512 nematic spatial light modulator (Boulder Non-linear Systems 

(BNS) XY series, Model- P512) via a beam splitter that returned the scattered light to an 

8-bit CMOS camera (Thorlabs, DCC1545M High Resolution USB 2.0 CMOS Camera) 

with an effective area of 1280 x 1024 pixels. It is assumed that only the zero-order output 

pattern from the BNS XY Series nematic SLM is responsible for image reconstruction due 

to the high zero-order diffraction efficiency of the device.8 Additionally, BNS’s high speed 

addressing scheme is assumed to limit phase drooping and latency, resulting in temporally 

stable phase modulation.8 Before the reflected light was imaged on the CMOS array, the 

light passed through a 4ƒ imaging system with an adjustable aperture stop located in the 

Fourier plane of the front lens. The lenses comprising the 4ƒ imaging system consisted of 

a 125mm focal length (FL) achromatic triplet and a 75.0mm FL achromatic doublet. The 

effective focal length and principal plane of the system were estimated using thin-lens 

approximations.9 The CMOS array was located in the imaging plane, approximately 

132mm from the second lens. The resulting image magnification was roughly 0.5. The 

aperture stop was placed in the Fourier plane at a distance equal to the focal length from 

each lens. Varying the diameter of the aperture opening changes the minimum speckle size 

observed on the camera. Reducing the opening of the aperture resulted in larger speckles, 

while increasing the diameter resulted in smaller speckles.10 The speckle size, dsp, was 

estimated by Eq. 1, where λ is the illumination wavelength, v is the distance from the 

principal plane of the lens system to the imaging plane, and a is the diameter of the viewing 

lens aperture.11  
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2.4
spd

a
λν

=                                                                                            (1) 

 The light passed through a neutral density filter wheel set to attenuate incoming light, 

allowing adjustable incident intensity. The beam was then passed through a spatial filter 

consisting of a 10X microscope objective and a 25-micron pinhole.  The beam was then 

collimated before passing through a λ/2 plate. The half-wave plate served to orient the 

polarization of the incoming light in the vertical plane so that the nematic SLM functioned 

in the phase-only mode. By operating in the phase-only mode, the light backscattered from 

the SLM was de-phased in the same way as if it were scattered from a rough surface or a 

scattering volume. A polarizer placed in the imaging arm was oriented in the same plane 

as the incident light. This resulted in observing only a single component of the 

electromagnetic wave on the CMOS array, thus generating a polarized speckle pattern. 

Care was taken to ensure negligible ambient light reached the CMOS array. 

 To generate the speckle patterns from the SLM, a sequence of phase screens, 

arbitrarily chosen to be 50 frames in length was loaded to the SLM. The phase screens were 

generated by filling a 512 x 512 array with randomly generated complex numbers of unit 

amplitude, with phases uniformly distributed over [0, 2π]. For each individual phase screen 

loaded to the SLM, a pre-determined look-up table (LUT) was used to ensure the phase 

modulation resulted in a linear relationship between phase distribution [0, 2π] and resulting 

gray values [0, 255]. Thus, light scattered from each individual SLM element was de-

phased accordingly and the resulting scattered wavefront had an identical phase 

distribution. The scattered light remained temporally and spatially coherent, allowing for 

random interference to occur when the scattered light impinged on the CMOS chip of the 

camera, resulting in a speckle pattern.  
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 The phase screen sequence allowed for controlled temporal decorrelation behavior. 

By controlling the temporal decorrelation behavior of the phase screens, the temporal 

decorrelation behavior of the resulting speckle patterns was varied using the copula 

method.12 The correlation, r, between the speckle patterns was varied over the interval [1,-

1]. For a specified correlation of r = 1.0 between multiple phase screens, the resulting phase 

screens were perfectly correlated, resulting in perfectly correlated sequential speckle 

patterns. When r = 0, the phase screens and resulting sequential speckle patterns were 

completely uncorrelated. Due to the complex symmetric nature of the Fourier transform 

relating the phase screens to speckle patterns, phase screen realizations of r ≤ 0 result in an 

uncorrelated speckle pattern. The shape of the decorrelation curve was governed by the 

rate at which the realization was altered following either a Gaussian or exponential curve, 

resulting in either Gaussian or Lorentzian decorrelation behavior in the imaged speckle. 

When generating the phase screens, we invoke the Wiener-Khinchin theorem13 to recall 

that an exponential and a Lorentzian form a Fourier pair, as does a Gaussian and a 

Gaussian. That is, when the phase screens exhibited a Gaussian decorrelation behavior, the 

resulting speckle pattern sequence also exhibited Gaussian behavior. When the phase 

screens exhibited an exponential decorrelation behavior, the speckle sequence exhibited 

Lorentzian behavior. In the present work, the decorrelation time of the generated speckle 

frames was arbitrarily chosen to be 17 (‘fast’) and 37 (‘slow’) frames. An example of 

Gaussian phase screen decorrelation behavior, showing varying decorrelation times, can 

be seen in Fig. 49. Fig. 49 also demonstrates the ability to change the shape of the 

autocorrelation function between Gaussian and Lorentzian. 

 Once the phase screens were generated and loaded to the SLM, each resulting 
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speckle pattern was imaged individually by the CMOS camera. The camera was set to 

expose each static speckle pattern for 35ms. An example showing a single phase screen 

and the resulting imaged speckle pattern can be seen in Fig. 50. Using the imaged speckle 

patterns generated by the SLM, the first-order statistics of the coherent summation were 

assessed and described by the intensity probability distribution function (PDF). A 

comparison of the theoretical and experimental PDF for fully polarized speckle is displayed 

in Fig. 51. For a polarized speckle pattern, the theoretical PDF is a negative exponential.10 

Fig. 51 (a) demonstrates the ability to reproduce a single speckle pattern with a negative 

exponential PDF. In cases where multiple speckle patterns are incoherently summed, the 

PDF of the resultant speckle pattern is described by a Rayleigh distribution. In practice, 

such a speckle pattern can also be seen when observing speckle from a volume scatterer, 

such as tissue, without using a polarizer to isolate a single component of the 

electromagnetic field.  Fig. 51 (b) demonstrates the system’s ability to reproduce speckle 

with a Rayleigh PDF, by summing on an intensity basis, multiple individual polarized 

speckle patterns.  The number of speckle patterns that need to be summed to generate a 

speckle pattern with a Rayleigh PDF, as in Fig. 51 (b), depends upon the decorrelation 

behavior of the speckle sequence. The lower the correlation between subsequent speckle 

patterns, the fewer individual patterns need to be summed.  In the limiting case, only 2 

speckle patterns are necessary if they are statistically independent from one another.10 

The second-order statistics of the interference patterns were analyzed through the 

power spectral density (PSD) of the imaged speckle pattern. As the calculated PSD can be 

used to experimentally determine speckle size, we use the calculated speckle size to 

describe the second-order behavior of the generated speckle patterns. To control the 
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minimum size of the speckle, and thus the second-order characteristics, the camera aperture 

can be easily adjusted to verify the minimum speckle size in the imaged speckle, the power 

spectral density (PSD) of the imaged speckle was calculated and the diameter of the 

frequency energy band was measured (in pixels). The size of the minimum imaged speckle 

was calculated as7 

Width of ArraySpeckle size = 2  
Diameter of PSD Energy Band

 
 
 

                                 (2) 

Fig. 52 demonstrates the variation in speckle size achieved with the SLM-based system. 

The speckle size for both the experimental and calculated values are displayed relative to 

the pixel size of the CMOS array.  Fig. 52 (a) displays a single speckle pattern from the 

SLM and its power spectrum (Fig. 52 (b)), which was used to estimate the minimum 

speckle size in the pattern.  Fig. 52 (c) displays the theoretical speckle size, as calculated 

with Eq. 1, plotted with the imaged speckle size. For the experiments across varied 

intensities, the minimum imaged speckle size relative to the CMOS chip pixel size (5.2 

μm) was kept constant at roughly 3.25 pixels/speckle.  

 To generate an LSC image, multiple sequential frames of speckle patterns imaged 

by the CMOS array were summed to simulate speckle blurring, as seen when dynamic 

speckle is imaged with a finite exposure time. The blurred speckle results in reduced 

contrast seen in temporal averaging. Contrast, K, was defined as 

 ( ) i

i

K r
σ
µ

=                                                                  (3) 

where  is the mean intensity and  is the standard deviation of the intensity of a 7 x7 iµ iσ
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window of pixels slid across the image at location r r.1  For a single, static, polarized 

speckle pattern, the global contrast attains a theoretical maximum of unity. For time 

averaged, dynamic speckle patterns the global contrast is less than unity.  It should be 

noted, however, that these global contrast values have their own log-normal statistical 

distributions.14 Because the speckle decorrelation behavior can be altered in different pixel 

regions of the phase screens, the speckle patterns generated by the SLM are capable of 

displaying spatially-dependent decorrelation behavior. Thus regions of ‘fast’ decorrelation 

and ‘slow’ decorrelation can be created to mimic an LSCI image of a vessel with rapidly 

moving scatterers (‘fast’ decorrelation) surrounded by slower moving spatial regions. To 

demonstrate the ability to simulate a LSCI image with a ‘vessel’ region with motion in the 

center, a 200-pixel section of rows was set to decorrelate 16 times faster 2( )cτ than the 

more slowly varying speckles from the surrounding ‘tissue’ region, ( )1cτ , i.e. 2 116c cτ τ= , 

as displayed in Fig. 53. 

 In LSCI, the link between speckle contrast and flow can only be made if the flow 

distribution is known. However, the actual flow distribution of biological fluid is often 

unknown. Early work has assumed the flow of blood to exhibit either purely unordered 

(Lorentzian) or ordered (Gaussian) flow.2,15,16 Theoretically, a Lorentzian velocity 

distribution is only appropriate for Brownian motion (purely random flow). Conversely, a 

Gaussian velocity distribution is technically only appropriate for purely ordered flow. In 

practical situations, it is likely that the true flow model is a mixture between the Lorentzian 

and Gaussian line shapes.  In laser engineering terms, the convolution between these two 

line shapes is a Voigt profile, frequently referred to as a rigid-body model.3  Because 

assumptions are made to describe the fluid velocity distribution, the unambiguous 
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quantification of flow velocity from contrast values is not yet possible. To model the fluid 

velocity distribution with this system, in addition to controlling the temporal decorrelation 

rate of the speckle images, we produce speckle sequences that decorrelate following a user 

defined function. We demonstrate this by producing speckle sequences that result in 

calculated contrast values that follow both Gaussian and Lorentzian distributions.1 

However, it should be noted that any desired function can be used to mimic whatever flow 

model is desired. The experimental contrast values were compared to the theoretical values 

as a function of the ratio of the speckle decorrelation time, τc, and the integration time, T. 

Here, the speckle decorrelation time, τc was predetermined by the realization number of 

the generated phase screens, and the integration time, T, was determined by the number of 

summed frames. The results are shown in Fig. 54, which displays a comparison of 

theoretical and experimental results. For the experiments with varied intensity, 30 phase 

screens assuming a Gaussian decorrelation pattern were summed to ensure the LSC images 

were sampled and summed to appropriately mimic contrast values seen when imaging 

experimental dynamic speckle with a finite exposure time. 

 To adjust the intensity of the interference pattern, a neutral density (ND) filter 

wheel covering 2-orders of magnitude was placed in front of the 2.5mW stabilized HeNe 

laser used in these experiments. A photo-detector was placed in the imaging plane to 

calibrate the intensity of the light at the CMOS array for each filter value prior to image 

acquisition. The intensity calibration curve can be seen in Fig. 55. This calibration curve 

was used to relate the speckle contrast to a relative reduction of laser power density at the 

imaging plane. This approach serves as an attempt to generalize the results so that they 
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may be applied to an array of LSCI applications where the scattering and absorption of 

light by tissue may result in backscattered light with varied intensities.  

 To address the effects of over- and under-exposing speckle during image 

acquisition, the exact same phase screens were loaded to the SLM and the resulting speckle 

patterns were imaged in the same sequence at each intensity value. The statistical behavior 

of a single ‘frozen’ speckle pattern was assessed and then the contrast from the incoherent 

sum of 30 images was calculated. This summation of 30 images mimics a finite exposure 

time as would be used in an actual LSCI application.  

 Herein, we describe the effects of light intensity on sensitivity to changes in spatial 

decorrelation between ‘flow’ and ‘static’ regions. The ratio between the contrasts in the 

two regions is calculated in dB as: 

1020 log static
ratio

flow

KK
K

 
=   

 
                                                       (4) 

Kstatic was calculated in a 200 x 100 pixel area in the 1cτ  region, while Kflow was calculated 

from a 200 x 100 pixel area in the faster decorrelating, 2cτ region. 

 

3 Results  

An example of the same imaged ‘frozen’ speckle pattern sampled at varying intensities can 

be seen in Fig. 56. The global spatial contrast of this speckle pattern, as calculated by Eq. 

3, is shown across the full range of intensities investigated in Fig. 57 (a), with the global 

intensity mean and spatial standard deviations used to calculate contrast plotted in Fig. 57 

(b). In the frozen speckle images where the mean intensity is approximately equal to the 

standard deviation (in the intensity range from 6.05μW/cm2- .605μW/cm2, 10%-1% of full 
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intensity), the resulting contrast is close to the theoretical value of unity. The global 

contrast was closest to unity when the mean intensity value fell between grayscale values 

of 10 to 73 (recall that an 8-bit CMOS chip was used in these experiments). In practice, the 

contrast is rarely equal to the exact theoretical value of 1.0 due to mechanical vibrations, 

dark current noise in the system, and the fact that calculated global contrast values display 

an intrinsic log-normal distribution.17  

 The effects of incident intensity on the sampled first-order statistics of the 

individual speckle patterns were also investigated. Note that the random phase screens used 

to generate the speckle patterns had a phase modulation of [0, 2π]. Thus, since a single 

polarization state was observed, the speckle patterns produced from these phase screens 

should exhibit a negative exponential intensity PDF. The first order statistics (PDFs) seen 

in the camera quantization of the speckle at the intensity extremes displayed deviation from 

the negative exponential in both the calculated PDF and in the camera intensity histogram, 

as seen in Fig. 58. The histograms show that high incident intensity results in pixel 

saturation while low intensities cover a smaller range of gray values. The highest contrast 

values were seen in the cases where both the calculated PDF and quantized intensities 

(histogram data) follow the theoretical negative exponential. 

 The resulting spatial contrast analysis, following the summation of the 30-image 

sequences at varied intensities, is displayed in Fig. 59. The 200-pixel band in the center of 

the image displayed rapid blurring of the speckles, thus reducing contrast, as expected due 

to the smaller 2cτ . In this set of images, it is clear that there is an intensity range that results 

in optimal discrimination between the rapidly and slowly decorrelating regions. To 

quantitatively assess this, the contrast values of both the simulated ‘static’ and ‘flow’ 
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regions were plotted in Fig. 60. The intensity values that resulted in a near theoretically 

ideal PDF in the ‘frozen’ speckle patterns (1%-10%) showed the highest contrast ratio 

between ‘static’ and ‘flow’ regions when the respective speckle patterns were summed. 

Within this range of intensities, the ‘frozen’ speckle pattern exhibits a global contrast near 

unity. Outside of this range, the contrast values in the ‘dynamic’ speckle vary and 

sensitivity to speckle motion becomes reduced.  

 By assessing the width of the power spectral density (PSD) of the individual speckle 

patterns, the frequency content of the images can be assessed.  For an appropriately 

(spatially) sampled speckle image, with no saturation or significant under-exposure, the 

frequency content is a means of estimating the minimum speckle size in the speckle image 

(i.e., second order statistics).  Since the minimum speckle size was set during the course of 

the experiments by the diameter of the aperture in the imaging arm, we were able to use 

this a priori information to investigate the effects of image saturation on the frequency 

content of the speckle images. An intensity trace was plotted across the PSD and the full 

width half max (FWHM) was estimated to get the width of the PSD, and thereby address 

the effects of saturation on the frequency content of the speckle images. The  ‘apparent’ 

imaged speckle size, artificially created by the loss of high frequency content, was 

calculated by taking the FWHM of the PSD and dividing the result by 2 (because DC is 

located in the center of the display) so the values used align with the theoretical calculation 

of speckle size seen in Eq 1. The experimentally determined ‘apparent’ speckle size was 

then normalized relative to the camera pixel size and displayed in Fig. 61. A loss of high 

frequency data was seen in speckle patterns imaged with greater than 10% of full intensity. 

This result indicates that there may be pixel saturation at higher intensities18. 
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 In many applications of LSCI, raw speckle images are subject to histogram 

equalization so as to fill the full dynamic range prior to processing.19, 20, 21 This scaling 

effect often adjusts the mean contrast in the single speckle pattern, and is thought to 

improve an under-exposed image. To assess whether the simple histogram equalization 

results in improved contrast, the gray values of each imaged speckle pattern summed in the 

spatial contrast analysis of ‘dynamic’ speckle were scaled to fill the full dynamic range of 

the camera. Another approach would be to employ a higher bit-camera and bin multiple 

intensity values so as to reduce the number of gray levels. However, the goal of this simple 

analysis is to briefly display that although single “frozen” speckle look better post 

equalization, the actual image quality is not improved.  For this investigation, the exact 

same speckle patterns were adjusted to ensure the only altered variable was the scaling 

function. The spatial contrast analysis on the scaled images resulted in an almost identical 

range of optimal values as a function of intensity. A comparison of scaled and unscaled 

contrast values can be seen in Fig. 62. Fig. 62 also displays an example of the scaled 

histogram data from a speckle pattern at a very low intensity (.03% of full intensity). The 

resulting measured contrast values following the histogram equalization were nearly 

identical to the contrast values of the unscaled speckle patterns in the resulting spatial 

contrast analysis.  The results indicate that simple histogram equalization does not 

significantly improve speckle statistics and sensitivity to flow at low intensities. 

 

4 Conclusions 

 The results of our experiments indicate that there is a range of incident intensities 

that approach the theoretically ideal PDF for fully developed speckle. This in turn 
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corresponds to a global contrast approaching unity. When the single speckle patterns 

displayed characteristics near the theoretically ideal values, the resulting spatial contrast 

analysis from a summation of speckle patterns displayed a high sensitivity to motion. The 

results indicate the importance of assessing the quantized signal and resulting intensity 

PDF of the speckle patterns during image acquisition in LSCI. The optimum sensitivity of 

the LSC image is seen when the speckle frames have appropriate intensity distribution to 

display the first-order statistics of fully developed speckle.  

 It is clear that at high intensities, high frequency information is lost due to camera 

saturation, resulting in a decrease in contrast. In cases of high incident intensity, it has been 

proposed that intensity peaks are clipped in the quantization process of the camera.18 When 

the average intensity of the raw speckle image is less than half the maximum intensity 

value of the sensor, clipping of the intensity peaks is assumed to have a reduced effect. For 

an 8-bit camera with 28 = 256 different gray values, Alexander et al.18 proposed that the 

maximum average intensity value should be 128 to avoid clipping of high frequency data. 

That is, the maximum average gray level should be no more than 128 in order to avoid 

saturation and the loss of the ability to resolve individual speckles. Our results support this 

claim. At higher intensities, the imaged speckle displayed decrease in high frequency 

content due to pixel saturation. When the average intensity gray value was above 125 

(>16% of the full intensity), we also saw a reduction in statistical variance that resulted in 

contrast values diverging from the theoretical maximum. It is also worth noting that 

detecting the number of saturated pixels in the image, prior to spatial contrast analysis, 

could serve as a method to determine if the camera is over-saturated. Others have indicated 

that increased intensity improves detectability of changes to flow,22 however, our results 
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indicate that there is a window of laser power densities that result in optimum sensitivity. 

In practice, the upper range of incident light intensity is limited by the laser power density 

at which a coherent light source will backscatter without inducing functional changes in 

the tissue due to global absorption. In other words, the laser power density where functional 

changes occur in the tissue is the limiting factor in determining a maximum incident 

intensity. At this maximum incident intensity, a combination of reducing the imaging 

aperture diameter and shortening the camera integration time can be used to prevent 

saturation. 

 Simply scaling to fill the full dynamic range using an 8-bit camera improved the 

mean intensity when the images were under-exposed, but did not correct for the loss of 

data due to the digital quantization process. Even though this process improved the mean 

intensity value, the standard deviation changed at relatively the same rate, resulting in little 

to no improvement in calculated contrast. If the gray values of under-exposed images are 

quantized by a lower bit system, small variances in the shades of gray may be binned to 

the same gray value, resulting in a loss of information. Simple histogram equalization does 

not improve contrast data in a situation where sampling results in information loss. 

However, there may be reason to further explore methods of pre-processing speckle data 

so as to improve the statistics of poorly-sampled data. There have been proposed methods 

to solve the issue of uneven illumination that may be applied to improve the contrast of 

under-exposed images used in LSCI. 23, 24, 25 It can also be reasoned that increased camera 

bit-depth may result in fully developed speckle characteristics and optimum sensitivity 

across a wider range of incident intensity values.23 In practice, however, adjusting the 
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incident intensity and camera settings may be sufficient to ensure optimal speckle statistics 

are satisfied when sampling speckle data for LSCI.  

 We have shown the ability of our system to faithfully reproduce the speckle images 

used in LSC imaging and its promise as a research tool. Because our electro-optical system 

allows for fast experimentation and reproduction, this system provides a convenient and 

quantifiable platform to address many of the real-world complications that hinder the on-

going development of LSCI, such as incident intensity in experimental settings. It is hoped 

that through approaches similar to that employed herein, the fine details of LSCI can be 

explored in more detail and further development of the imaging modality as a reliable and 

inexpensive research and diagnostic tool can proceed. 
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Figures 

 

Fig. 48. a) Optical layout of the LSCI simulating system. The laser was a 2.5mW stabilized 

HeNe (633nm). The focal length of L1, L2, and L3 are 75mm, 125mm, and 75mm, 

respectively. The image magnification equaled ~ 0.5. b) Horizontal view of the imaging 

arm of the set-up. The distance from L2 to L3 was ~300mm. The CMOS array was located 

~132mm from the back focal plane (BFL) of L3. The principal plane, ν, was estimated to 

be ~37.5mm from the CMOS array. 
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Fig 49. Decorrelation curve for SLM speckle patterns with different correlation behavior 

exhibiting a Gaussian decorrelation profile. For this example, 50 screens were created to 

image 50 consecutive speckle patterns.  (a) Decorrelation of 37 frames, (b) Decorrelation 

of 17 frames, (c) Demonstration of both Lorentzian and Gaussian decorrelation behaviors 

showing a Lorentzian autocorrelation function plotted along with a Gaussian 

autocorrelation function. 
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Fig. 50. (a) Phase screen loaded to the SLM. The pixel-phases were evenly distributed and 

randomly generated between [0,2π]. The pixel values are displayed using a RGB color map 

with 64 discrete values. (b) The resulting speckle pattern imaged with an 8-bit CMOS 

camera. The random interference can be seen mapped to gray values between [0,255], with 

a value of 255 indicating purely constructive interference, and 0 resulting from destructive 

interference. 
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Fig. 51. Intensity PDF’s of SLM generated speckle patterns plotted with numerically 

simulated (theoretically ideal) speckle patterns. (a) Fully developed, polarized intensity 

PDF showing both experimental (SLM) and theoretical speckle patterns in agreement. (b) 

Non-polarized intensity PDF showing both experimental and theoretical results in 

agreement. It is worth noting that the Rayleigh PDF is often dependent on the scale factor 

used. For this experiment, the logarithmic scale shows similar linearity to assume an 

accurate intensity distribution. 
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Fig 52. (a) SLM generated speckle pattern (b) SLM generated speckle PSD.  The minimum 

speckle size in this case was 4 pixels. (c) Variation in speckle size plotted as a function of 

the aperture diameter, with the theoretical curve of Eq. 1 plotted as the solid line. The 

experimentally sampled speckle size is plotted as a blue dot. 
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Fig 53.  Simulated LSC image. The center region represents the ‘flow’ region (𝜏𝜏𝑐𝑐2). The 

contrast ratio between the static (𝜏𝜏𝑐𝑐1) and dynamic region was 4.108dB. In this figure, the 

contrast range was set between [0,1.5]. The nearly concentric rings come from noise in 

the optical layout of the system. 
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Fig 54. SLM simulated contrast vs τ𝑐𝑐
𝑇𝑇

 for both a Gaussian and Lorentzian velocity 

distribution. The SLM set-up was able to faithfully reproduce the expected results for 

both flow models. 

 

 



www.manaraa.com

199 

Fig 55. Relation between ND filter and average intensity at CMOS array. The intensity 

was reduced logarithmically from the full intensity of .0605mW/cm2. 

 

 

Fig 56. “Frozen” speckle patterns at (a) 100%, (b) 30%, (c) 8.75%, and (d) 3.4%, of full 

intensity (.0605mW/cm2). 
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Fig 57. (a) Contrast in a single speckle frame. In the case where a large field is used, such 

as a global contrast, the theoretical limit of K=1 can be assumed as the “ideal.”11 Note the 

range where global contrast approaches unity. (b) The global mean intensity (black dot) 

and spatial standard deviation (red star) used to calculate contrast of a single speckle 

pattern. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

(h) 
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(i) 

 

(j) 
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(k) 

 

(l) 

Fig 58. PDF of speckle patterns at (a) 100%, (b) 30%, (c) 8.75%, (d) 1.1%, (e) .35%, and 

(f) .12% of full intensity, plotted on a log scale. Camera histogram of speckle patterns at 

(g) 100%, (h) 30%, (i) 8.75%, (j) 1.1%, (k) .35%, and (l) .12% of full intensity. 
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Fig 59. Spatial analysis of speckle patterns at intensities of (a) 100%, (b) 30%, (c) 8.75%, 

(d) 3.4%, (e) 1.1%, and (f) .35%. The ring in the upper right corner of the images come 

from statistically negligible noise in the optical system. 
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Fig 60. (a) Contrast of speckle regions in spatial averaged LSCI. Red stars indicate the 

‘flow’ region of faster decorrelating speckle, with the black dots indicative of the ‘tissue’ 

region with slower decorrelating speckle. (b) Contrast ratio of the ‘flow’ region and the 

‘static’ region. Optimum sensitivity to temporal changes follow the trends in Figure 52. 

 

 

Fig 61. (a) PSD of frozen speckle pattern imaged at 8.75 % of full intensity (b) 

Frequency energy crossing the full image width, passing through the center. (c) 

Frequency information was used to calculate apparent speckle size (Eq. 4) at each 

incident intensity. 
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Fig 62. Raw speckle data imaged at 0.35% intensity: (a) histogram scaled (b) Contrast 

values shown with all images scaled to fill the full dynamic range of the 8-bit camera. 

The optimum imaging window of incident intensity showed little to no difference in the 

spatial analysis between the original (red stars) and scaled (blue triangles) images (c) 

Contrast ratio of the ‘flow’ region and the ‘static’ region for both scaled (blue triangle) 

and unscaled (red star) speckle. 
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Abstract 

The temporal contrast of ultrasound speckle images is used to visualize flow and diffusion 

in tissue mimicking phantoms in this Note.  Contrast, defined as the inverse of the signal-

to-noise ratio is used frequently in coherent optical imaging to assess motion and flow of 

blood in biological tissue and in blood vessels.  Laser speckle contrast imaging has been 

shown to be sensitive to flux in the tissues of interest.  However, this modality has not been 

exploited in ultrasonic imaging. The results presented herein indicate that temporal 

ultrasound speckle contrast imaging (tUSCI) may be valuable in visualizing diffusive flow 

in tissues.  The clinical visualization of tissue perfusion using ultrasound is a persistent 

clinical challenge.  The purpose of this Note is to demonstrate the viability of USCI to 

addressing this challenge. 

 

I.  Introduction 

 The effective measurement of tissue perfusion by ultrasound remains a clinical 

challenge, particularly in small vessels ( )those with a diameter of 2.0 mm<  where the 

sensitivity of Doppler ultrasound is poor due to the small mean Doppler shifts ω

associate with the low velocities in these vessels [1].  Contrast enhanced ultrasonic imaging 

(CEUI) with microbubbles is a relatively new approach to the imaging of tissue perfusion 

and has been used to assess tissue perfusion in a variety of tissues including kidney [2], 

muscle [3], adipose tissue [4], renal tissue [1], and vascular tissue [5].   While CEUI has 

become the preferred method for using ultrasound to visualize and quantify tissue 

perfusion, there are numerous alternative medical imaging modalities that are routinely 

employed for tissue perfusion imaging. These modalities, however, tend to be expensive, 
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expose the patients to ionizing radiation and/or require the injection of nuclear tracers.   

Such modalities include position emission tomography (PET), single photon computed 

tomography (SPECT), multi-detector computed tomography (CT), nuclear magnetic 

resonance imaging (MRI) [1].  Laser Doppler flowmetry [6] presents another, less 

expensive alternative, however this technique has limited depth penetration and probes 

only a small volume (typically ~1 mm3) defined by the intersection of 2 laser beams.  Laser 

Doppler flowmetry can be used in a scanning mode, however, the scanned volume is still 

relatively restricted in size.    

 Laser speckle contrast imaging (LSCI) is an alternative laser-based approach for 

the assessment of relative blood flow and tissue perfusion [7-9].  The technique is full field 

and is sensitive to both changes in the concentration and velocity of scattering particles 

(e.g. red blood cells).  In LSCI, a broad area is coherently illuminated with a laser source 

and the backscattered laser speckle is recorded with a camera over a finite camera 

integration time.  The crux of the technique is that there is a quantifiable relationship 

between the motion of the scattering particles and the contrast of the time integrated 

speckle pattern.  The key, then, is to develop a correlation function between the contrast 

observed in the image plane and the motion of the scatterers in the object plane.  Like laser 

Doppler flometry, LSCI has limited penetration depth which is dictated by the optical 

properties of the tissue under observation. 

 The speckle phenomenon is ubiquitous in any sort of coherent imagery, including 

ultrasound.  Regardless of the coherent source, the underlying physics behind the formation 

of speckle is identical.  It results from the coherent summation of scattered waves from a 

rough surface or scattering volume [10].  Because of the ubiquitous nature of speckle, the 
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speckle-based techniques used to optically assess motion and flow in biological tissue 

should translate to ultrasound.  The purpose of this paper is to demonstrate that the 

moderately well-developed techniques of temporal LSCI can be applied to assessing tissue 

perfusion using ultrasound. By analogy, we refer to this imaging modality as temporal 

ultrasound speckle contrast imaging (tUSCI). 

 The purpose of this manuscript is to demonstrate the feasibility of using temporal 

speckle contrast in ultrasound images to assess flow and perfusion in tissue phantoms. 

 

II.  Theory 

 A brief overview of the theory behind speckle is called for in order to understand 

tUSCI.  For a more detailed discussion of ultrasound speckle statistics, readers are referred 

to Burkhardt [11] and Wagner et al [12].  The discussion here will focus on simple scans, 

and not compound scans.  The above references [11,12] discuss the statistics of compound 

scans.  A fundamental difference between laser speckle and ultrasound speckle is that the 

former is an intensity measurement, while the latter is an amplitude measurement.  Since 

ultrasound is pulsed, we can assume that during the temporal detection envelope several 

sinusoidal pulses with randomly distributed phases between the interval [ ]0,2π  are 

summed.  By further assuming that the resolution cell in the tissue contains a large number 

of scatterers, it can be readily shown that the complex amplitude A probability distribution 

of the speckle is circularly Gaussian and follows the Rayleigh distribution [10] of Eq. (1) 

( )
2

exp ,
2

A Ap A
ψ ψ

 
= − 

 
                                                              (1) 
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where ψ  is the variance of scattering amplitude A.  This distribution assumes that there is 

a very weak, or non-existent specular component of the backscatter.  That is, it assumes 

0 .A
ψ

=  As A
ψ

 increases away from zero, the distribution becomes asymptotically 

Gaussian, assuming a sufficiently large number of phasors are summed.  While a full 

discussion of the implications of this distribution on tUSCI is beyond the scope of this 

manuscript, and indeed still requires some theoretical development, it should be noted that 

it sets an upper limit on the maximum contrast values that can be obtained.   

 The parameter A
ψ

is commonly referred to as the signal to noise ratio (SNR).  To 

be consistent with common nomenclature, we note that 

max 1.91ASNR
σ

= =                                                                   (2) 

where 2 .ψ σ=  The inverse of the SNR is what is known as the contrast, K: 

1 .SNR K− =                                                              (3) 

This definition is completely apart from any generalizing assumption about the underlying 

statistics of the field.  Thus, in USCI, assuming no specular component in the echo, 

max
1 0.523 .

1.91
K = =  In LSCI, as we are doing herein, the typical assumption is that the 

speckle pattern is associated with a sufficiently large sum of complex field components 

that the central limit theorem can be invoked [13].  If the field components are polarized, 

and the phases are uniformly distributed and statistically independent, then the resulting 

speckle pattern displays a negative exponential PDF and the contrast as defined by Eq. (3) 

is exactly unity.  Because ultrasound senses the envelope or magnitude of the echo, the 
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theoretical maximum is something less than unity [12]. These theoretical maximum values, 

however, have their own accompanying distributions and it is very likely that K values 

greater (and less) than the theoretical maximums will be observed [14].   

 In its most common incarnation, spatial LSCI is performed by calculating the 

spatial contrast by sliding a convolution window, typically on the order of 7 7×  pixels in 

dimension, across a time integrated exposure and replacing the central pixel with the 

calculated contrast value for that small subset of pixels.  In this approach, then, any motion 

of the speckle pattern during the finite exposure time leads to a reduction in contrast [7-9].  

This phenomenon has been exploited by many authors to examine blood flows, for 

example.  Recently, Khaksari and Kirkpatrick [15] demonstrated that LSCI is sensitive to 

total flux.  Specifically, in ordered flow, LSCI is sensitive to advective flux and shows 

similar sensitivity to red blood cell concentration and velocity (or speed if direction is not 

explicitly known). 

 Alternatively, the temporal contrast of a sequence of speckle images can be 

quantified on a pixel by pixel basis [16].  The key to temporal speckle contrast imaging is 

to image sufficiently fast that any speckle motion is essentially stopped during a single 

image acquisition and then the statistics of the ‘frozen’ speckle can be assessed.   Assuming 

that this condition of frozen speckle is met, then any motion over time will result in an 

increase in contrast, whereas zero motion will result in 0K →  for a sequence of images 

devoid of uncorrelated noise.  The high image acquisition rate of ultrasound indicates this 

approach for speckle contrast imaging using a sequence of B-scans. 

 Besides motion, consideration of the approach reveals that the final contrast values 

will be sensitive to other experimental parameters as well such as size (relative to detector 
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pixel size) and the shape of the individual speckles and the number of B-scans analyzed.  

As noted by Burckhardt [11], the speckle size is on the order of the resolution of the scanner 

and depends therefore on the aperture of the transducer.  Wagner et al. [12] note that the 

dimensions of the speckle are different in the axial and longitudinal directions.  They note 

that in the axial direction, the speckle width is inversely related to the pulse bandwidth and 

that in the longitudinal direction, the speckle dimension is proportional to the transducer 

beam width and thus increases with increasing range.    

 

III.  Experiments 

 Experiments were performed on flow phantoms to demonstrate the basic concept 

of tUSCI.  A programmable ultrasound system (Verasonics Inc. Redmond, WA) equipped 

with a linear array ultrasound probe (L7-4 Phillips Inc., center frequency 5MHz, 60% 

fractional bandwidth) was used to acquire ultrasound data. Raw IQ ultrasound data under 

the plane wave mode were exported from the ultrasound system for off-line post-

processing. B-scans were acquired at a rate of 200 Hz. 

 The ultrasound flow phantom was composed of a soft, latex rubber tube (8mm inner 

diameter, 1mm wall thickness) imbedded in a block  of tissue-mimicking (TM) gelatin 

(7.4% dry weight gelatin, sigma-Aldrich Inc., St Louis, MO, USA).   The TM gelatin block 

was constructed and housed in a 50mL plastic container.  Glass microspheres (50-100 

micrometer diameter, sigma-Aldrich Inc., St Louis, MO, USA) were added to the TM 

gelatin as scattering source for ultrasound imaging. Degassed water containing Nylon 

microbeads (7-11 micrometer diameters, 4% by weight, Arkema, Inc., Colombes, France) 

was flowed through the ultrasound flow phantom.  
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 Three different flow conditions were investigated. In the first condition, the fluid 

flow through the 8 mm tube without any blockage. In conditions 2 and 3, a 10 mm long 

piece of sponge was placed into the tube in order to create diffusive flow. Under conditions 

2 and 3, diffusive flow was induced by two different pressure gradients, respectively, and 

their flow rates (0.44 ml/s and 0.79 ml/s) were measured by a graduate cylinder.   

IV.  Results 

Speckle Size and Probability Distribution 

 Ensuring that the speckle pattern is adequately sampled in a spatial sense is a 

requirement for USCI, as it is for LSCI [7-9].  If the speckles are not spatially sampled to 

at least meet the (spatial) Nyquist criteria (greater than 2 pixels per speckle) [17], the 

temporal statistics (e.g., the temporal derivatives) cannot represent the true value of the 

speckles and the speckles will be temporally uncorrelated.  Spatially undersampling leads 

to a reduction in the accuracy of the tUSCI estimates.  The minimum speckle size (in pixels) 

minϕ  was determined by calculating the power spectral density (PSD) of the raw speckle 

images in the B-scan sequences and applying Eq. (4) which the yields minimum speckle 

size in terms of pixels: 

min
Width of Array2 .

Diameter of PSD Energy Band
ϕ

 
=  

 
                                           (4) 

Figure (63a) displays a typical B-scan from the flow sequence.  The B-scan was not 

compounded in any form so as to not reduce the speckle visibility.  Figure (63b) displays 

the experimental histogram of the B-mode data from Fig. (63a). The data clearly display a 

Rician distribution.  Figure (63c) is the PSD of Fig. (63a). By employing Eq. (4), then, 
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from Fig. (63c), the minimum speckle size for this B-scan was ~8.1 pixels in the axial 

direction and ~6.2 pixels in the range direction.   

 

Contrast Images 

 In this section, we display 3 sets of contrast images, one set for each flow condition.  

In each set contrast images generated over 10, 100 and 200 images are displayed displaying 

the effects of number of frames analyzed on the final contrast image.  Raw speckle images 

are also displayed.  Note that for display purposes, the scales of the contrast images, even 

within a single set, vary. 

 In these contrast images, higher values are indicative of speckle motion due to 

moving scatterers in the flow phantoms.  Motion is from left to right.  Figure (64) displays 

the images generated from the unrestricted flow model.  The flow in the 8 mm tube is 

clearly visible due to the change in temporal contrast.  The contrast ratio ratioK   between 

the region with the flowing fluid and the static gel increased with an increase in the number 

of images analyzed.  This is consistent with what has been reported prior for temporal laser 

speckle contrast imaging [16].  ratioK  was determined by taking the ratio between the mean 

contrast  in the flow region and the mean contrast in the static gel region.   Figure (67) 

displays the influence of the number of frames analyzed on ratioK  . 

 Figures (65) and (66) show the results for the diffusion experiments.  Again, the 

diffusional motion is clearly visible by the increase in contrast.  Of particular note, is that 

as the number of frames analyzed was increased, the fraction of the image in the flow 

region displaying an increased contrast increased form left to right in the image.  This 
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increase in high contrast area shows the moving diffusion front through the sponge 

phantom. 

 Similar to above, as the number of frames analyzed increased, ratioK  decreased.  

Figure (67) displays these results.  A more detailed study is necessary for proper 

interpretation of this plot, however, it does reveal that there is a clear distinction between 

the 3 different flow conditions. 

 

V.  Conclusions 

 The results of this study demonstrate the feasibility of tUSCI for visualizing flow 

and perfusion in tissue flow phantoms.  By increasing the number of frames analyzed 

(which corresponds to increasing the time of observation), the moving diffusion front was 

visualized.  For example, by analyzing over 150 frames, the total time in which the data 

were analyzed was 0.75s, while when analyzing 200 frames, the total time over which the 

data were analyzed was 1.0 s.  Thus, the diffusive flow images (Figs. 3 and 4) show the 

motion of the diffusion front from 0.05 s (10 frames) to 1 s (200 frames). This indicates 

that USCI may be a useful modality in visualizing diffusive flow in tissues using 

ultrasound.  Further work is indicated, both theoretical and experimental.  The visualization 

of diffusional flux in deep tissue remains a clinical challenge.  However, the results of this 

investigation indicate that tUSCI holds promise as a simple means of assessing diffusional 

flux [15] in tissues using the temporal statistics of ultrasound speckle without the addition 

of contrast agents, nuclear tracers or exposing the patient to ionizing radiation. 
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Figures: 

 

Figure 63a.  B-scan of the unrestricted flow phantom.  The tube containing the flow is 

the slightly darker region approximately 2/3 of the way down from the top.  No 

information about motion is revealed. 
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Figure 63b.  Probability distribution function of the B-scan shown in Fig. (63a).  The 

distribution is Rician, starting to converge on a Gaussian distribution indicating a 

significant specular component to the echo. 

 

Figure 63c.  Power spectral density of the B-scan shown in Fig. (63a) used to compute 

the minimum speckle size in both the axial and the range direction.  The non-circular 



www.manaraa.com

224 

shape of the bright central energy band indicates that the speckles have different 

dimensions in the two directions. 

 

(a) 
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(b) 

 

(c) 



www.manaraa.com

226 

 

(d) 

Figure 64.  (a) B-scan of the unrestricted flow phantom. (b) Temporal contrast image 

using 10 frames to calculate the contrast statistic. (c) Temporal contrast image using 100 

frames to calculate the contrast statistic. (d) Temporal contrast image using 200 frames to 

calculate the contrast statistic. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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Figure 65.  (a) B-scan of the diffusive flow phantom with a slower flow rate. (b) 

Temporal contrast image using 10 frames to calculate the contrast statistic. (c) Temporal 

contrast image using 100 frames to calculate the contrast statistic. (d) Temporal contrast 

image using 200 frames to calculate the contrast statistic.  Of particular note is the 

progression of the area of the image that displays increasing from left to right contrast as 

time (number of frames) increases.  This indicates a diffusion front moving through the 

sponge. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 66.  (a) B-scan of the diffusive flow phantom with a faster flow rate. (b) Temporal 

contrast image using 10 frames to calculate the contrast statistic. (c) Temporal contrast 

image using 100 frames to calculate the contrast statistic. (d) Temporal contrast image 

using 200 frames to calculate the contrast statistic.  Of particular note is the progression 

of the area of the image that displays increasing from left to right contrast as time 

(number of frames) increases.  This indicates a diffusion front moving through the 

sponge. 
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Figure 67.  Plot of the ratio of the temporal contrast in the flow region to that in the static 

gel region, .ratioK  From top to bottom, ratioK for the slow diffusive phantom (green stars 

on-line), ratioK for the unrestricted flow phantom (red dashes on-line), and ratioK for the 

fast diffusive phantom (blue dots on-line). 
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Appendix A: 

Copyright agreement of SPIE journals (chapters 6,7, 8 and 9): 
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